Abstract-Bovine aortic smooth muscle cell (BASMC) cultures undergo mineralization on addition of the organic phosphate donor, -glycerophosphate (GP). Mineralization is characterized by apatite deposition on collagen fibrils and the presence of matrix vesicles, as has been described in calcified vascular lesions in vivo as well as in bone and teeth. In the present study, we used this model to investigate the molecular mechanisms driving vascular calcification. We found that BASMCs lost their lineage markers, SM22␣ and smooth muscle ␣-actin, within 10 days of being placed under calcifying conditions. Conversely, the cells gained an osteogenic phenotype as indicated by an increase in expression and DNA-binding activity of the transcription factor, core binding factor ␣1 (Cbfa1). Moreover, genes containing the Cbfa1 binding site, OSE2, including osteopontin, osteocalcin, and alkaline phosphatase were elevated. The relevance of these in vitro findings to vascular calcification in vivo was further studied in matrix GLA protein null (MGP Ϫ/Ϫ ) mice whose arteries spontaneously calcify. We found that arterial calcification was associated with a similar loss in smooth muscle markers and a gain of osteopontin and Cbfa1 expression. These data demonstrate a novel association of vascular calcification with smooth muscle cell phenotypic transition, in which several osteogenic proteins including osteopontin, osteocalcin, and the bone determining factor Cbfa1 are gained. The findings suggest a positive role for SMCs in promoting vascular calcification.
Genetic mutations or engineered nucleases that disrupt the HIV co-receptor CCR5 block HIV infection of CD4+ T cells. These findings have motivated the engineering of CCR5-specific nucleases for application as HIV therapies. The efficacy of this approach relies on efficient biallelic disruption of CCR5, and the ability to efficiently target sequences that confer HIV resistance to the CCR5 locus has the potential to further improve clinical outcomes. We used RNA-based nuclease expression paired with adeno-associated virus (AAV) – mediated delivery of a CCR5-targeting donor template to achieve highly efficient targeted recombination in primary human T cells. This method consistently achieved 8 to 60% rates of homology-directed recombination into the CCR5 locus in T cells, with over 80% of cells modified with an MND-GFP expression cassette exhibiting biallelic modification. MND-GFP – modified T cells maintained a diverse repertoire and engrafted in immune-deficient mice as efficiently as unmodified cells. Using this method, we integrated sequences coding chimeric antigen receptors (CARs) into the CCR5 locus, and the resulting targeted CAR T cells exhibited antitumor or anti-HIV activity. Alternatively, we introduced the C46 HIV fusion inhibitor, generating T cell populations with high rates of biallelic CCR5 disruption paired with potential protection from HIV with CXCR4 co-receptor tropism. Finally, this protocol was applied to adult human mobilized CD34+ cells, resulting in 15 to 20% homologous gene targeting. Our results demonstrate that high-efficiency targeted integration is feasible in primary human hematopoietic cells and highlight the potential of gene editing to engineer T cell products with myriad functional properties.
These studies suggest that elevated calcium may stimulate HSMC mineralization by elevating Ca x P product and enhancing the sodium-dependent phosphate cotransporter-dependent mineralization pathway previously observed in HSMCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.