Genetic mutations or engineered nucleases that disrupt the HIV co-receptor CCR5 block HIV infection of CD4+ T cells. These findings have motivated the engineering of CCR5-specific nucleases for application as HIV therapies. The efficacy of this approach relies on efficient biallelic disruption of CCR5, and the ability to efficiently target sequences that confer HIV resistance to the CCR5 locus has the potential to further improve clinical outcomes. We used RNA-based nuclease expression paired with adeno-associated virus (AAV) – mediated delivery of a CCR5-targeting donor template to achieve highly efficient targeted recombination in primary human T cells. This method consistently achieved 8 to 60% rates of homology-directed recombination into the CCR5 locus in T cells, with over 80% of cells modified with an MND-GFP expression cassette exhibiting biallelic modification. MND-GFP – modified T cells maintained a diverse repertoire and engrafted in immune-deficient mice as efficiently as unmodified cells. Using this method, we integrated sequences coding chimeric antigen receptors (CARs) into the CCR5 locus, and the resulting targeted CAR T cells exhibited antitumor or anti-HIV activity. Alternatively, we introduced the C46 HIV fusion inhibitor, generating T cell populations with high rates of biallelic CCR5 disruption paired with potential protection from HIV with CXCR4 co-receptor tropism. Finally, this protocol was applied to adult human mobilized CD34+ cells, resulting in 15 to 20% homologous gene targeting. Our results demonstrate that high-efficiency targeted integration is feasible in primary human hematopoietic cells and highlight the potential of gene editing to engineer T cell products with myriad functional properties.
MDCK cells form uninterrupted monolayers and make occluding junctions similar to those of natural epithelia. This article explores the relationship between these junctions and the cytoskeleton by combining studies on the distribution of microfilaments and microtubules with the effect of drugs, such as colchicine and cytochalasin B, on the degree of tightness of the occluding junctions . To study the degree of tightness, monolayers were prepared by plating MDCK cells on nylon disks coated with collagen . Disks were mounted as flat sheets between two Lucite chambers, and the'sealing capacity of the junctions was evaluated by measuring the electrical resistance across the monolayers . Equivalent monolayers on coverslips were used to study the distribution of microtubules and microfilaments by indirect immunofluorescence staining with antibodies against tubulin and actin. This was done both on complete cells and on cytoskeleton preparations in which the cell membranes had been solubilized before fixation . Staining with antiactin shows a reticular pattern of very fine filaments that spread radially toward the periphery where they form a continuous cortical ring underlying the plasma membrane . Staining with antitubulin depicts fibers that extend radially to form a network that occupies the cytoplasm up to the edges of the cell . Colchicine causes a profound disruption of microtubules but only a 27% decrease in the electrical resistance of the resting monolayers . Cytochalasin B, when present for prolonged periods, disrupts the cytoplasmic microfilaments and abolishes the electrical resistance . The cortical ring of filaments remains in place but appears fragmented with time . We find that removal of extracellular Ca", which causes the tight junctions to open, also causes the microfilaments and microtubules to retract toward the center of the cells. The process of junction opening and fiber retraction is reversed by the restoration of Ca". Colchicine has no effect on either the opening or reversal processes, but cytochalasin B inhibits the resealing of the junctions by disorganizing the filaments in the ring and at the apical border of the cells. These cytochalasin B effects are fully reversible . The correlation among cell shape, cytoskeletal patterns, and electrical resistance in the EGTAopened and resealed monolayers suggests that microfilaments, through their association with plasma membrane components, play a role in positioning the junctional strands and influence the degree of sealing of the occluding junctions.
The pH of airway surface liquid (ASL) is a key factor that determines respiratory host defense; ASL acidification impairs and alkalinization enhances key defense mechanisms. Under healthy conditions, airway epithelia secrete base (HCO3¯) and acid (H+) to control ASL pH (pHASL). Neutrophil-predominant inflammation is a hallmark of several airway diseases, and TNFα and IL-17 are key drivers. However, how these cytokines perturb pHASL regulation is uncertain. In primary cultures of differentiated human airway epithelia, TNFα decreased and IL-17 did not change pHASL. However, the combination (TNFα+IL-17) markedly increased pHASL by increasing HCO3¯ secretion. TNFα+IL-17 increased expression and function of two apical HCO3¯ transporters, CFTR anion channels and pendrin Cl-/HCO3- exchangers. Both were required for maximal alkalinization. TNFα+IL-17 induced pendrin expression primarily in secretory cells where it was co-expressed with CFTR. Interestingly, significant pendrin expression was not detected in CFTR-rich ionocytes. These results indicate that TNFα+IL-17 stimulate HCO3- secretion via CFTR and pendrin to alkalinize ASL, which may represent an important defense mechanism in inflamed airways.
Submucosal glands (SMGs) are a prominent structure that lines human cartilaginous airways. Although it has been assumed that SMGs contribute to respiratory defense, that hypothesis has gone without a direct test. Therefore, we studied pigs, which have lungs like humans, and disrupted the gene for ectodysplasin (EDA-KO), which initiates SMG development. EDA-KO pigs lacked SMGs throughout the airways. Their airway surface liquid had a reduced ability to kill bacteria, consistent with SMG production of antimicrobials. In wild-type pigs, SMGs secrete mucus that emerges onto the airway surface as strands. Lack of SMGs and mucus strands disrupted mucociliary transport in EDA-KO pigs. Consequently, EDA-KO pigs failed to eradicate a bacterial challenge in lung regions normally populated by SMGs. These in vivo and ex vivo results indicate that SMGs are required for normal antimicrobial activity and mucociliary transport, two key host defenses that protect the lung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.