Many animals keep track of their angular heading over time while navigating through their environment. However, a neural-circuit architecture for computing heading has not been experimentally defined in any species. Here we describe a set of clockwise- and anticlockwise-shifting neurons in the Drosophila central complex whose wiring and physiology provide a means to rotate an angular heading estimate based on the fly's angular velocity. We show that each class of shifting neurons exists in two subtypes, with spatiotemporal activity profiles that suggest different roles for each subtype at the start and end of tethered-walking turns. Shifting neurons are required for the heading system to properly track the fly's heading in the dark, and stimulation of these neurons induces predictable shifts in the heading signal. The central features of this biological circuit are analogous to those of computational models proposed for head-direction cells in rodents and may shed light on how neural systems, in general, perform integration.
Summary
Cortical areas differ in their patterns of connectivity, cellular composition, and functional architecture. Spike trains, on the other hand, are commonly assumed to follow similarly irregular dynamics across neocortex. We examined spike-time statistics in four parietal areas using a method that accounts for non-stationarities in firing rate. We found that, whereas neurons in visual areas fire irregularly, many cells in association and motor-like parietal regions show increasingly regular spike trains by comparison. Regularity was evident both in the shape of interspike interval distributions and in spike-count variability across trials. Thus Poisson-like randomness is not a universal feature of neocortex. Rather, many parietal cells have reduced trial-to-trial variability in spike counts that could provide for more reliable firing-rate signals. These results suggest that spiking dynamics may play different roles in different cortical areas, and should not be assumed to arise from fundamentally irreducible noise sources.
Animals must quickly recognize objects in their environment and act accordingly. Previous studies indicate that looming visual objects trigger avoidance reflexes in many species [1-5]; however, such reflexes operate over a close range and might not detect a threatening stimulus at a safe distance. We analyzed how fruit flies (Drosophila melanogaster) respond to simple visual stimuli both in free flight and in a tethered-flight simulator. Whereas Drosophila, like many other insects, are attracted toward long vertical objects [6-10], we found that smaller visual stimuli elicit not weak attraction but rather strong repulsion. Because aversion to small spots depends on the vertical size of a moving object, and not on looming, it can function at a much greater distance than expansion-dependent reflexes. The opposing responses to long stripes and small spots reflect a simple but effective object classification system. Attraction toward long stripes would lead flies toward vegetative perches or feeding sites, whereas repulsion from small spots would help them avoid aerial predators or collisions with other insects. The motion of flying Drosophila depends on a balance of these two systems, providing a foundation for studying the neural basis of behavioral choice in a genetic model organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.