The study is based on validating and exploring the effects of a mega project plan (CPEC) on infrastructure development and Sustainable Project Management. The CPEC has great importance to infrastructure development and economy-boosting. The current study's primary aim is to deal with environmental protection, economic boost up, international relations influencing to the Project's success. The paper also addressed project management as a moderator between environmental protection, economic boost up, international relations, and the CPEC project's success. The primary data has been gathered by using questionnaires, and PLS-SEM has been employed for the analysis. The results revealed that environmental protection, economy boost up, and international relations have a positive association with the success of CPEC. The outcomes also exposed that project management moderating among the nexus of economy boosts up the international relations and success of CPEC. The present study results guided how Pakistan and China make the CPEC project stronger with the efficient implementation of practices required for protecting the environment, with the economic growth and boost up, and good strong relations with foreign countries. This study was an attempt to validate the different factors to check their association with each other in a new environment, resulting in a leading edge for the success of mega projects that influence project management.
Cadmium exposure induces nephrotoxicity by mediating oxidative stress, inflammation, and apoptosis. The purpose of this study was to examine the protective effect of royal jelly on Cd-induced nephrotoxicity. Adult male mice were distributed randomly into 4 clusters: untreated, royal jelly-treated (85 mg/kg, oral), CdCl 2 -treated (6.5 mg/kg, intraperitoneal), and pretreated with royal jelly (85 mg/kg) 2 h before CdCl 2 injection (6.5 mg/kg, intraperitoneal) for seven consecutive days. Cd concentration in the renal tissue and absolute kidney weight of the Cd-treated mice were significantly higher than those of control group. The levels of kidney function markers, kidney injury molecules-1 (KIM-1), metallothionein, lipid peroxidation, nitric oxide, tumor necrosis factor-α, interleukin-1β, and the apoptosis regulators Bax and caspases-3 also increased significantly in the renal tissue of Cd-treated mice, whereas the levels of glutathione, antioxidant enzyme activities, and the apoptosis inhibitor Bcl-2 were significantly reduced in the renal tissue of Cd-treated group. Histopathological studies showed vacuolation and congested glomeruli in the kidney tissue of Cd-treated mice. However, all aforementioned Cd-induced changes were attenuated by pretreatment with royal jelly. We therefore concluded that royal jelly attenuated Cd-induced nephrotoxicity and it is suggested that this nephroprotective effect could be linked to its ability to promote the nuclear factor erythroid 2–related factor 2 (Nrf2)/antioxidant responsive element (ARE) pathway.
Cheeseweed mallow ( Malva parviflora L.) was used to biosynthesize silver nanoparticles. The biosynthesized silver nanoparticles were classified by UV–vis Spectroscopy and Fourier-Transform Infrared Spectroscopy (FT-IR). The shape and size distribution were visualized by Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), and Zeta potential analysis. The chemical composition of M. parviflora leaf extract was identified by Gas Chromatography and Mass Spectroscopy (GC/MS). Finally, in vitro antifungal assay was done to assess the potential of biosynthesized silver nanoparticles and crude leaf extract of M. parviflora for inhibiting the mycelial growth of phytopathogenic fungi. The UV–vis analysis manifests the formation of silver nanoparticles. FTIR analysis established that chemicals of the leaf extract stabilized the biosynthesized silver nanoparticles by binding with the free silver ions. The TEM, FE-SEM and zeta potential analyzer confirmed that the biosynthesized silver nanoparticles were mostly spherical with an average diameter of 50.6 nm. The biosynthesized silver nanoparticles and leaf extract of M. parviflora effectively mitigate the mycelial growth of Helminthosporium rostratum, Fusarium solani, Fusarium oxysporum , and Alternaria alternata. The maximum reduction in mycelial growth by biosynthesized nanoparticles was observed against H. rostratum (88.6%). Whereas, the leaf extract of M. parviflora was most effective against F. solani (65.3%). Thus, the biosynthesis of nanoparticle assisted by M. parviflora is a feasible and eco-friendly method for the synthesis of silver nanoparticles. Further the silver nanoparticles and leaf extract of M. parviflora could be explored for the development of the fungicide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.