The development of a vaccine would provide an important new tool for the control of human hookworm infection. On the basis of successful vaccination of laboratory animals with living irradiated, third-stage hookworm larvae (L3), we examined the antibody responses of individuals from hookworm endemic areas of Brazil and China against the most abundant L3 secreted antigens, the ancylostoma secreted proteins, ASP-1 and ASP-2. Logistic regression was used to investigate the effects of antibody isotype responses to ASPs on the risk of an individual harboring heavy hookworm infection. A significant protective association was observed between increasing anti-ASP-2 IgE levels and the risk of heavy hookworm infection. To confirm that ASP-2 is a protective antigen, laboratory dogs were immunized with recombinant ASP-2 formulated with the GlaxoSmithKline Adjuvant, AS03. Sera obtained from the immunized dogs exhibited high geometric mean antibody titers, immunoprecipitated native ASP-2 from L3 extracts and localized the site of ASP-2 expression to the glandular esophagus and body channels exiting to the cuticle. The sera also exhibited an increased ability to inhibit migration of L3 through tissue in vitro relative to sera from AS03-injected controls. Upon L3 challenge, the ASP-2 vaccinated dogs exhibited significant reductions in fecal egg counts and intestinal hookworm burden. These findings provide strong support for the development of an effective recombinant vaccine against hookworm infection in humans.
BackgroundHookworms infect 730 million people in developing countries where they are a leading cause of intestinal blood loss and iron-deficiency anemia. At the site of attachment to the host, adult hookworms ingest blood and lyse the erythrocytes to release hemoglobin. The parasites subsequently digest hemoglobin in their intestines using a cascade of proteolysis that begins with the Ancylostoma caninum aspartic protease 1, APR-1.Methods and FindingsWe show that vaccination of dogs with recombinant Ac-APR-1 induced antibody and cellular responses and resulted in significantly reduced hookworm burdens (p = 0.056) and fecal egg counts (p = 0.018) in vaccinated dogs compared to control dogs after challenge with infective larvae of A. caninum. Most importantly, vaccinated dogs were protected against blood loss (p = 0.049) and most did not develop anemia, the major pathologic sequela of hookworm disease. IgG from vaccinated animals decreased the catalytic activity of the recombinant enzyme in vitro and the antibody bound in situ to the intestines of worms recovered from vaccinated dogs, implying that the vaccine interferes with the parasite's ability to digest blood.ConclusionTo the best of our knowledge, this is the first report of a recombinant vaccine from a hematophagous parasite that significantly reduces both parasite load and blood loss, and it supports the development of APR-1 as a human hookworm vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.