Helminths are parasitic worms. They are the most common infectious agents of humans in developing countries and produce a global burden of disease that exceeds better-known conditions, including malaria and tuberculosis. As we discuss here, new insights into fundamental helminth biology are accumulating through newly completed genome projects and the nascent application of transgenesis and RNA interference technologies. At the same time, our understanding of the dynamics of the transmission of helminths and the mechanisms of the Th2-type immune responses that are induced by infection with these parasitic worms has increased markedly. Ultimately, these advances in molecular and medical helminth biology should one day translate into a new and robust pipeline of drugs, diagnostics, and vaccines for targeting parasitic worms that infect humans.
The authors discuss the molecular pathogenesis of opisthorchiasis and associated cholangiocarcinogenesis, particularly nitrative and oxidative DNA damage and the clinical manifestations of cholangiocarcinoma.
Schistosomes are blood-dwelling flukes that infect 200 million people worldwide and are responsible for hundreds of thousands of deaths annually. Using a signal sequence trap, we cloned from Schistosoma mansoni two cDNAs, Sm-tsp-1 and Sm-tsp-2, encoding the tetraspanin (TSP) integral membrane proteins TSP-1 and TSP-2. We raised antibodies to recombinant TSP fusion proteins and showed that both proteins are exposed on the surface of S. mansoni. Recombinant TSP-2, but not TSP-1, is strongly recognized by IgG1 and IgG3 (but not IgE) from naturally resistant individuals but is not recognized by IgG from chronically infected or unexposed individuals. Vaccination of mice with the recombinant proteins followed by challenge infection with S. mansoni resulted in reductions of 57% and 64% (TSP-2) and 34% and 52% (TSP-1) for mean adult worm burdens and liver egg burdens, respectively, over two independent trials. Fecal egg counts were reduced by 65-69% in both test groups. TSP-2 in particular provided protection in excess of the 40% benchmark set by the World Health Organization for progression of schistosome vaccine antigens into clinical trials. When coupled with its selective recognition by naturally resistant people, TSP-2 seems to be an effective vaccine antigen against S. mansoni.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.