India’s overall ranking on the Global Climate Risk Index has been deteriorating in recent years, making it more vulnerable to climate risks. It has been indicated in the literature that climate change is also associated with agrarian distress. However, empirical analyses are scanty on this, especially in the Indian context. In this analytical exercise, we tried to explore the association between farmers’ suicides and climate change vulnerability across Indian states. Using data from various sources, we arrive at an Agrarian Vulnerability Index and juxtaposed that with farmers’ suicide data between 1996 to 2015 collected from the National Crime Records Bureau (NCRB). We noted a strong association between climate change vulnerability and farmers’ suicides. The essence of this analysis is to indicate and understand the broad trends and associations. This research, in the process, informs and presses for a systematic, more comprehensive study with an agenda at micro and meso levels to understand the nuances of this association.
Submitted: 01 November 2020; Revised: 11 January 2021; Accepted: 29 April 2021
The COVID-19 pandemic is adversely impacting food and nutrition security and requires urgent attention from policymakers. Sustainable intensification of agriculture is one strategy that attempts to increase food production without adversely impacting the environment, by shifting from water-intensive crops to other climate-resistant and nutritious crops. This paper focuses on the Indian state of Andhra Pradesh by studying the impact of shifting 20% of the area under paddy and cotton cultivation to other crops like millets and pulses. Using FAO’s CROPWAT model, along with monsoon forecasts and detailed agricultural data, we simulate the crop water requirements across the study area. We simulate a business-as-usual base case and compare it to multiple crop diversification strategies using various parameters—food, calories, protein production, as well as groundwater and energy consumption. Results from this study indicate that reduced paddy cultivation decreases groundwater and energy consumption by around 9–10%, and a calorie deficit between 4 and 8%—making up this calorie deficit requires a 20–30% improvement in the yields of millets and pulses. We also propose policy interventions to incentivize the cultivation of nutritious and climate-resistant crops as a sustainable strategy towards strengthening food and nutrition security while lowering the environmental footprint of food production.
<p>Agriculture plays a pivotal role in supporting the socioeconomic situation of millions of farmers in India, which is increasingly coming under threat due to climate change. In particular, the future changes in rainfall patterns has the potential to directly affect the irrigation water demands, thereby impacting water consumption, agricultural productivity, and influencing food security. For instance, the optimal sowing dates for crops may change according to the altered rainfall patterns. With this motivation, we studied the impacts of shifts in sowing periods in order to identify the optimal sowing dates for a particular crop. First, we collected daily temperature and rainfall data for India at a resolution of 0.25<sup>o</sup> from different GCM models (EC-Earth 3 and EC-Earth 3 veg) under different SSP scenarios (SSP 126, SSP 245, SSP370, SSP585). Also, region-wise agricultural data such as crop acreage and sowing dates were collected for seven major crops - paddy, wheat, maize, groundnut, sugarcane, red gram, black gram, and soybean. Subsequently, we estimated the reference evapotranspiration using the modified Penman-Monteith method. The estimated reference evapotranspiration and rainfall data were incorporated into FAO&#8217;s CROPWAT model to calculate the irrigation water requirements (IWR) of the selected crops. The optimal IWR for each crop was selected by varying the sowing dates at fifteen-day intervals across the year (twenty-four dates for the year). Preliminary results indicate that there is considerable scope for water savings by shifting the sowing dates of staple crops to account for climate change impacts. These strategies may become vital for policymakers in the coming decades to reduce the stresses on water without endangering food security. Indeed, such strategies require the cooperation of various stakeholders for better implementation at multiple scales.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.