The complete mitogenome of Talpa occidentalis, the Iberian mole, was sequenced using a combination of the Illumina and Sanger methods. The 16,962 bp genome obtained contains 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs, and a control region. Thirty-seven identical repetitions of a 10-nucleotide (CACACGTACG) repeat element were identified in the non-coding control region (D-loop). The number, order, and orientation of the mitochondrial genes are the same as in T. europaea, the only mitogenome published so far for this genus. These two mitogenomes differ only at the repeat element included in the control region. The phylogeny obtained for the Talpidae species using the protein-coding genes of these mitogenomes agrees with the current classification of this family.
The 65 species of the genus Microtus have unusual sex-related genetic features and a high rate of karyotype variation. However, only nine complete mitogenomes for these species are currently available. We describe the complete mitogenome sequences of three Microtus, which vary in length from 16,295 bp to 16,331 bp, contain 13 protein-coding genes (PCGs), two ribosomal RNA genes, 22 transfer RNA genes and a control region. The length of the 13 PCGs and the coded proteins is the same in all three species, and the start and stop codons are conserved. The non-coding regions include the L-strand origin of replication, with the same sequence of 35 bp, and the control region, which varies between 896 bp and 930 bp in length. The control region includes three domains (Domains I, II and III) with extended termination-associated sequences (ETAS-1 and ETAS-2) in Domain I. Domain II and Domain III include five (CSB-B, C, D, E and F) and three (CSB-1, CSB-2, and CSB-3) conserved sequence blocks, respectively. Phylogenetic reconstructions using the mitochondrial genomes of all the available Microtus species and one representative species from another genus of the Arvicolinae subfamily reproduced the established phylogenetic relationships for all the Arvicolinae genera that were analyzed.
In the genus Talpa a new species, named Talpa aquitania, has been recently described. Only cytogenetic data are available for the nuclear genome of this species. In this work, we characterize the satellitome of the T. aquitania genome that presents 16 different families, including telomeric sequences, and they represent 1.24% of the genome. The first satellite DNA family (TaquSat1-183) represents 0.558%, and six more abundant families, including TaquSat1-183, comprise 1.13%, while the remaining 11 sat-DNAs represent only 0.11%. The average A + T content of the SatDNA families was 50.43% and the median monomer length was 289.24 bp. The analysis of these SatDNAs indicated that they have different grades of clusterization, homogenization, and degeneration. Most of the satDNA families are present in the genomes of the other Talpa species analyzed, while in the genomes of other more distant species of Talpidae, only some of them are present, in accordance with the library hypothesis. Moreover, chromosomal localization by FISH revealed that some satDNAs are localized preferentially on centromeric and non-centromeric heterochromatin in T. aquitania and also in the sister species T. occidentalis karyotype. The differences observed between T. aquitania and the close relative T. occidentalis and T. europaea suggested that the satellitome is a very dynamic component of the genomes and that the satDNAs could be responsible for chromosomal differences between the species. Finally, in a broad context, these data contribute to the understanding of the evolution of satellitomes on mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.