MicroRNAs (miRNAs) are small regulatory RNAs participating to several biological processes and known to be involved in various pathologies. Measurable in body fluids, miRNAs have been proposed to serve as efficient biomarkers for diseases and/or associated traits. Here, we performed a next-generation-sequencing based profiling of plasma miRNAs in 344 patients with venous thrombosis (VT) and assessed the association of plasma miRNA levels with several haemostatic traits and the risk of VT recurrence. Among the most significant findings, we detected an association between hsa-miR-199b-3p and haematocrit levels (P = 0.0016), these two markers having both been independently reported to associate with VT risk. We also observed suggestive evidence for association of hsa-miR-370-3p (P = 0.019), hsa-miR-27b-3p (P = 0.016) and hsa-miR-222-3p (P = 0.049) with VT recurrence, the observations at the latter two miRNAs confirming the recent findings of Wang et al. Besides, by conducting Genome-Wide Association Studies on miRNA levels and meta-analyzing our results with some publicly available, we identified 21 new associations of single nucleotide polymorphisms with plasma miRNA levels at the statistical significance threshold of P < 5 × 10−8, some of these associations pertaining to thrombosis associated mechanisms. In conclusion, this study provides novel data about the impact of miRNAs’ variability in haemostasis and new arguments supporting the association of few miRNAs with the risk of recurrence in patients with venous thrombosis.
Venous thromboembolism (VTE) is a common, multi-causal disease with potentially serious short- and long-term complications. In clinical practice, there is a need for improved plasma biomarker-based tools for VTE diagnosis and risk prediction. Here we show, using proteomics profiling to screen plasma from patients with suspected acute VTE, and several case-control studies for VTE, how Complement Factor H Related 5 protein (CFHR5), a regulator of the alternative pathway of complement activation, is a VTE-associated plasma biomarker. In plasma, higher CFHR5 levels are associated with increased thrombin generation potential and recombinant CFHR5 enhanced platelet activation in vitro. GWAS analysis of ~52,000 participants identifies six loci associated with CFHR5 plasma levels, but Mendelian randomization do not demonstrate causality between CFHR5 and VTE. Our results indicate an important role for the regulation of the alternative pathway of complement activation in VTE and that CFHR5 represents a potential diagnostic and/or risk predictive plasma biomarker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.