This work presents the development and implementation of a distributed navigation system based on object recognition algorithms. The main goal is to introduce advanced algorithms for image processing and artificial intelligence techniques for teaching control of mobile robots. The autonomous system consists of a wheeled mobile robot with an integrated color camera. The robot navigates through a laboratory scenario where the track and several traffic signals must be detected and recognized by using the images acquired with its on-board camera. The images are sent to a computer server that performs a computer vision algorithm to recognize the objects. The computer calculates the corresponding speeds of the robot according to the object detected. The speeds are sent back to the robot, which acts to carry out the corresponding manoeuvre. Three different algorithms have been tested in simulation and a practical mobile robot laboratory. The results show an average of 84% success rate for object recognition in experiments with the real mobile robot platform.
This work presents the development and implementation of a distributed navigation system based on computer vision. The autonomous system consists of a wheeled mobile robot with an integrated colour camera. The robot navigates through a laboratory scenario where the track and several traffic signals must be detected and recognized by using the images acquired with its on-board camera. The images are sent to a computer server that processes them and calculates the corresponding speeds of the robot using a cascade of trained classifiers. These speeds are sent back to the robot, which acts to carry out the corresponding manoeuvre. The classifier cascade should be trained before experimentation with two sets of positive and negative images. The number of images in these sets should be considered to limit the training stage time and avoid overtraining the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.