We present two empirical studies on the design of control software for robot swarms. In Study A, Vanilla and EvoStick, two previously published automatic design methods, are compared with human designers. The comparison is performed on five swarm robotics tasks that are different from those on which Vanilla and EvoStick have been previously tested. The results show that, under the experimental conditions considered, Vanilla performs better than EvoStick, but it is not able to outperform human designers. The results indicate that Vanilla's weak element is the optimization algorithm employed The main contributors to this research are G. Francesca and M. Birattari. AutoMoDe and Vanilla were conceived and developed by G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari.123 Swarm Intell to search the space of candidate designs. To improve over Vanilla and with the final goal of obtaining an automatic design method that performs better than human designers, we introduce Chocolate, which differs from Vanilla only in the fact that it adopts a more powerful optimization algorithm. In Study B, we perform an assessment of Chocolate. The results show that, under the experimental conditions considered, Chocolate outperforms both Vanilla and the human designers. Chocolate is the first automatic design method for robot swarms that, at least under specific experimental conditions, is shown to outperform a human designer.
We study the psychophysiological state of humans when exposed to robot groups of varying sizes. In our experiments, 24 participants are exposed sequentially to groups of robots made up of 1, 3 and 24 robots. We measure both objective physiological metrics (skin conductance level and heart rate), and subjective self-reported metrics (from a psychological questionnaire). These measures allow us to analyse the psychophysiological state (stress, anxiety, happiness) of our participants. Our results show that the number of robots to which a human is exposed has a significant impact on the psychophysiological state of the human and that higher numbers of robots provoke a stronger response.
Abstract. The term human-swarm interaction (HSI) refers to the interaction between a human operator and a swarm of robots. In this paper, we investigate HSI in the context of a resource allocation and guidance scenario. We present a framework that enables direct communication between human beings and real robot swarms, without relying on a secondary display. We provide the user with a gesture-based interface that allows him to issue commands to the robots. In addition, we develop algorithms that allow robots receiving the commands to display appropriate feedback to the user. We evaluate our framework both in simulation and with real-world experiments. We conduct a summative usability study based on experiments in which participants must guide multiple subswarms to different task locations.
Abstract. We present an experiment in automatic design of robot swarms. For the first time in the swarm robotics literature, we perform an objective comparison of multiple design methods: we compare swarms designed by two automatic methods-AutoMoDe-Vanilla and EvoStickwith swarms manually designed by human experts. AutoMoDe-Vanilla and EvoStick have been previously published and tested on two tasks. To evaluate their generality, in this paper we test them without any modification on five new tasks. Besides confirming that AutoMoDe-Vanilla is e↵ective, our results provide new insight into the design of robot swarms. In particular, our results indicate that, at least under the adopted experimental protocol, not only does automatic design su↵er from the reality gap, but also manual design. The results also show that both manual and automatic methods benefit from bias injection. In this work, bias injection consists in restricting the design search space to the combinations of pre-existing modules. The results indicate that bias injection helps to overcome the reality gap, yielding better performing robot swarms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.