The undersigned authors note the following: "We wish to bring to your attention an issue regarding our PNAS publication referenced above. Although we cite our earlier PNAS publication (see ref. Figs. 2 and 3 display the UWHBs for Hb β-subunit (pdb.1bz0, chain B) and human cellular prion protein (pdb.1qm0) (12)(13)(14). Within the natural interactive context of the Hb subunit, the UWHBs signal crucial binding regions (24): UWHBs (90, 94), (90, 95) are associated with the β-FG corner involved in the quaternary α1β2 interface; UWHB (5, 9) is adjacent to Glu-6 which in sickle cell anemia mutates to Val-6 and is located at the Val-6-(Phe-85, Leu-88) interface in the deoxyHbS fiber."The following text in the section titled 'Toward a Structural Diagnosis' on page 6449 of our text is similar to the text beginning in the last paragraph on page 2392 in ref. 23:The distribution of proteins according to their average extent of hydrogen bond wrapping and their spatial concentration of structural defects is shown in Fig. 5 (see also ref. 23). The sample of 2,811 PDB proteins is large enough to define a reliable abundance distribution with an inflection point at ρ = 6.20. The integration of the distribution over a ρ-interval gives the fraction of proteins whose ρ lies within that range. Of the 2,811 proteins examined, 2,572 have ρ > 6.20, and none of them is known to yield amyloid aggregation under physiological conditions entailing partial retention of structure. Strikingly, relatively few disease-related amyloidogenic proteins are known in the sparsely populated, underwrapped 3.5 < ρ < 6.20 range, with the cellular prion proteins located at the extreme of the spectrum (3.53 < ρ < 3.72)....The range of H-bond wrapping 3.5 < ρ < 4.6 of 20 sampled PDB membrane proteins has been included in Fig. 5 for comparison. As expected, such proteins do not have the stringent H-bond packing requirements of soluble proteins for their H bonds at the lipid interface. Thus, this comparison becomes suggestive in terms of elucidating the driving factor for aggregation in soluble proteins: Although the UWHB constitutes a structural defect in a soluble protein because of its vulnerability to water attack, it is not a structural defect in a membrane protein. The exposure of the polar amide and carbonyl of the unbound state to a nonpolar phase is thermodynamically unfavorable (22). The virtually identical ρ value for human prion and outer-membrane protein A (Fig. 5) is revealing in this regard.Furthermore, all known amyloidogenic proteins that occur naturally in complexed form have sufficient H-bond wrapping within their respective complexes (ρ value near 6.2). Their amyloidogenic propensity appears only under conditions in which the protein is dissociated from the complex (compare Fig. 5). This finding is corroborated by the following computation. If an intramolecular hydrogen bond is underwrapped within the isolated protein molecule but located at an interface upon complexation, then to determine its extent of wrapping within the complex, we take ...
New curcumin analogues (ester and acid series) were synthesized with the aim to improve the chemical stability in physiological conditions and potential anticancer activity. Cytotoxicity against different tumorigenic cell lines (human ovarian carcinoma cells -2008, A2780, C13*, and A2780/CP, and human colon carcinoma cells HCT116 and LoVo) was tested to evaluate cellular specificity and activity. Physico-chemical properties such as acidity, lipophilicity, kinetic stability, and free radical scavenging activity were investigated to shed light on the structure-activity relationship and provide new attractive candidates for drug development. Most of ester derivatives show IC(50) values lower than curcumin and exhibit selectivity against colon carcinoma cells. Especially they are extremely active after 24 h exposure showing enhanced inhibitory effect on cell viability. The best performances of ester curcuminoids could be ascribed to their high lipophilicity that favors a greater and faster cellular uptake overcoming their apparently higher instability in physiological condition.
Cancer is a death cause in economically developed countries that results growing also in developing countries. Improved outcome through targeted interventions faces the scarce selectivity of the therapies and the development of resistance to them that compromise the therapeutic effects. Genomic instability is a typical cancer hallmark due to DNA damage by genetic mutations, reactive oxygen and nitrogen species, ionizing radiation, and chemotherapeutic agents. DNA lesions can induce and/or support various diseases, including cancer. The DNA damage response (DDR) is a crucial signaling-transduction network that promotes cell cycle arrest or cell death to repair DNA lesions. DDR dysregulation favors tumor growth as downregulated or defective DDR generates genomic instability, while upregulated DDR may confer treatment resistance. Redox homeostasis deeply and capillary affects DDR as ROS activate/inhibit proteins and enzymes integral to DDR both in healthy and cancer cells, although by different routes. DDR regulation through modulating ROS homeostasis is under investigation as anticancer opportunity, also in combination with other treatments since ROS affect DDR differently in the patients during cancer development and treatment. Here, we highlight ROS-sensitive proteins whose regulation in oxidatively induced DDR might allow for selective strategies against cancer that are better tailored to the patients.
Thymidylate synthase (TS) is a target for pemetrexed and the prodrug 5-fluorouracil (5-FU) that inhibit the protein by binding at its active site. Prolonged administration of these drugs causes TS overexpression, leading to drug resistance. The peptide lead, LR (LSCQLYQR), allosterically stabilizes the inactive form of the protein and inhibits ovarian cancer (OC) cell growth with stable TS and decreased dihydrofolate reductase (DHFR) expression. To improve TS inhibition and the anticancer effect, we have developed 35 peptides by modifying the lead. The d-glutamine-modified peptide displayed the best inhibition of cisplatin-sensitive and -resistant OC cell growth, was more active than LR and 5-FU, and showed a TS/DHFR expression pattern similar to LR. Circular dichroism spectroscopy and molecular dynamics studies provided a molecular-level rationale for the differences in structural preferences and the enzyme inhibitory activities. By combining target inhibition studies and the modulation pattern of associated proteins, this work avenues a concept to develop more specific inhibitors of OC cell growth and drug leads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.