Antimicrobial resistance is one of the most worrying threats to humankind with extremely high healthcare costs associated. The current technologies used in clinical microbiology to identify the bacterial agent and profile antimicrobial susceptibility are time-consuming and frequently expensive. As a result, physicians prescribe empirical antimicrobial therapies. This scenario is often the cause of therapeutic failures, causing higher mortality rates and healthcare costs, as well as the emergence and spread of antibiotic resistant bacteria. As such, new technologies for rapid identification of the pathogen and antimicrobial susceptibility testing are needed. This review summarizes the current technologies, and the promising emerging and future alternatives for the identification and profiling of antimicrobial resistance bacterial agents, which are expected to revolutionize the field of clinical diagnostics.
Clinical midstream and urinary catheter isolates (n = 106) of extended-spectrum β-lactamase (ESBL)-positive Escherichia coli, Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae, Proteus mirabilis and meticillin-resistant Staphylococcus saprophyticus were tested against fosfomycin using the agar dilution method, the broth microdilution method and the gradient test described by the Clinical and Laboratory Standards Institute. Nitrofurantoin, co-trimoxazole, amoxicillin/clavulanic acid, cefuroxime, levofloxacin and ciprofloxacin were tested using the gradient test alone. Breakpoints from the European Committee on Antimicrobial Susceptibility Testing 2015 guidelines were used. Fosfomycin inhibited all of the ESBL-positive E. coli, P. mirabilis and meticillin-resistant S. saprophyticus strains isolated from urine, as well as 82% of KPC-producing K. pneumoniae isolates. Substantial agreement for fosfomycin activity was found for the three test methods, particularly for Enterobacteriaceae. This study confirmed that fosfomycin has good in vitro activity against more common multidrug-resistant uropathogens. Fosfomycin could be a reliable empirical therapeutic option for uncomplicated urinary tract infections caused by these organisms, and a valid option for sparing parenteral antibiotics, such as carbapenems.
Dissemination of resistance to carbapenems among Enterobacteriaceae through plasmids is an increasingly important concern in health care worldwide. Here we report the first description of an IncX3 plasmid carrying the blaKPC-3 gene in a strain of Serratia marcescens isolated from a kidney-liver transplanted patient at the transplantation centre ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy). To localize the transposable element containing the resistance-associated gene Next-Generation Sequencing of the bacterial DNA was performed. S. marcescens was positive for blaKPC-3 and blaSHV-11 genes. The molecular analysis demonstrated that the blaKPC-3 gene of this bacterial strain was located in one copy of the Tn-3-like element Tn4401-a carried in a plasmid that is 53 392 bp in size and showed the typical IncX3 scaffold. Our data demonstrated the presence of a new blaKPC-3 harbouring the IncX3 plasmid in S. marcescens. The possible dissemination among Enterobacteriaceae of this type of plasmid should be monitored and evaluated in terms of clinical risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.