Using NAM, bilateral nasal symmetry in patients with unilateral cleft lip and palate was improved before surgical repair. Furthermore, slight overcorrection of the alar dome on the cleft side using pressure exerted by the nasal stent is indicated to maintain the NAM result.
Morphospatial disharmony of the craniomaxillary and mandibular complexes may yield apparent mandibular prognathism, but Class III malocclusions can exist with any number of aberrations of the craniofacial complex. Deficient orthocephalization of the cranial base allied with a smaller anterior cranial base component has been implicated in the etiology of Class III malocclusions. Whereas the more acute cranial base angle may affect the articulation of the condyles resulting in their forward displacement, the reduction in anterior cranial size may affect the position of the maxilla. As well, intrinsic skeletal elements of the maxillary complex may be responsible for maxillary hypoplasia that may exacerbate the anterior crossbite seen in the Class III condition. Conversely, with an orthognathic maxilla, condylar hyperplasia and anterior positioning of the condyles at the temporo-mandibular joint may produce an anterior crossbite. Aside from the skeletal components, soft tissue matrices, particularly labial pressure from the circumoral musculature, may influence the final outcome of craniofacial growth of a child skeletally predisposed to Class III conditions. Indeed, as some Asian ethnic groups demonstrate an increased prevalence of Class III malocclusions, it is likely that the skeletal components and soft tissues matrices are genetically determined. Presumably, the co-morphologies of the craniomaxillary and mandibular complexes are likely dependent upon candidate genes that undergo gene-environmental interactions to yield Class III malocclusions. The identification of such genes is a desirable step in unraveling the complexity of Class III malocclusions. With this knowledge, the clinician may elect an early course of dentofacial orthopedic and orthodontic treatments aimed at preventing the development of Class III malocclusions.
Abstract. The significance of the cranial base in the development of Class III malocclusion remains uncertain. The purpose of this study was to determine whether the form of the cranial base differs between prepubertal Class I and Class III subjects. Lateral cephalographs of 73 children of European-American descent aged between 5 and 11 years with Class III malocclusion were compared with those of their counterparts with a normal, Class I molar occlusion. The cephalographs were traced, checked, and subdivided into seven age-and sex-matched groups. Average geometries, scaled to an equivalent size, were generated based on 13 craniofacial landmarks by means of Procrustes analysis, and these configurations were statistically tested for equivalence. Bivariate and multivariate analyses utilizing 5 linear and angular measurements were undertaken to corroborate the Procrustes analysis. Graphical analysis, utilizing thin-plate spline and finite element methods, was performed for localization of differences in cranial base morphology. Results indicated that cranial base morphology differed statistically for all age-wise comparisons. Graphical analysis revealed that the greatest differences in morphology occurred in the posterior cranial base region, which generally consisted of horizontal compression, vertical expansion, and size contraction. The sphenoidal region displayed expansion, while the anterior regions showed shearing and local increases in size. It is concluded that the shape of the cranial base differs in subjects with Class III malocclusion compared with the normal Class I configuration, due in part to deficient orthocephalization, or failure of the cranial base to flatten during development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.