Skeletal muscle is a dynamic organ, characterized by an incredible ability to rapidly increase its rate of energy consumption to sustain activity. Muscle mitochondria provide most of the ATP required for contraction via oxidative phosphorylation. Here we found that skeletal muscle mitochondria express a unique MCU complex containing an alternative splice isoform of MICU1, MICU1.1, characterized by the addition of a micro-exon that is sufficient to greatly modify the properties of the MCU. Indeed, MICU1.1 binds Ca one order of magnitude more efficiently than MICU1 and, when heterodimerized with MICU2, activates MCU current at lower Ca concentrations than MICU1-MICU2 heterodimers. In skeletal muscle in vivo, MICU1.1 is required for sustained mitochondrial Ca uptake and ATP production. These results highlight a novel mechanism of the molecular plasticity of the MCU Ca uptake machinery that allows skeletal muscle mitochondria to be highly responsive to sarcoplasmic [Ca] responses.
Calcium ions are highly versatile intracellular signals that regulate many cellular processes. The key to achieving this pleiotropic role is the spatiotemporal control of calcium concentration evoked by an extensive molecular repertoire of signalling components. Among these, reactive oxygen species (ROS) signalling, together with calcium signalling, plays a crucial role in controlling several physiopathological events. Although initially considered detrimental by-products of aerobic metabolism, it is now widely accepted that ROS, in subtoxic levels, act as signalling molecules. However, dysfunctions in the mechanisms controlling the physiological ROS concentration affect cellular homeostasis, leading to the pathogenesis of various disorders.
Summary
Parvalbumin (PV) is a cytosolic Ca
2+
-binding protein highly expressed in fast skeletal muscle, contributing to an increased relaxation rate. Moreover, PV is an “atrogene” downregulated in most muscle atrophy conditions. Here, we exploit mice lacking PV to explore the link between the two PV functions. Surprisingly, PV ablation partially counteracts muscle loss after denervation. Furthermore, acute PV downregulation is accompanied by hypertrophy and upregulation by atrophy. PV ablation has a minor impact on sarcoplasmic reticulum but is associated with increased mitochondrial Ca
2+
uptake, mitochondrial size and number, and contacts with Ca
2+
release sites. Mitochondrial calcium uniporter (MCU) silencing abolishes the hypertrophic effect of PV ablation, suggesting that mitochondrial Ca
2+
uptake is required for hypertrophy. In turn, an increase of mitochondrial Ca
2+
is required to enhance expression of the pro-hypertrophy gene PGC-1α4, whose silencing blocks hypertrophy due to PV ablation. These results reveal how PV links cytosolic Ca
2+
control to mitochondrial adaptations, leading to muscle mass regulation.
Abstract:The composition of the extracellular matrix (ECM) of skeletal muscle fibers is a unique environment that supports the regenerative capacity of satellite cells; the resident stem cell population. The impact of environment has great bearing on key properties permitting satellite cells to carry out tissue repair. In this study, we have investigated the influence of the ECM and glycolytic metabolism on satellite cell emergence and migration-two early processes required for muscle repair. Our results show that both influence the rate at which satellite cells emerge from the sub-basal lamina position and their rate of migration. These studies highlight the necessity of performing analysis of satellite behavior on their native substrate and will inform on the production of artificial scaffolds intended for medical uses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.