Direct quantification of terrestrial biosphere responses to global change is crucial for projections of future climate change in Earth system models. Here, we synthesized ecosystem carbon-cycling data from 1,119 experiments performed over the past four decades concerning changes in temperature, precipitation, CO 2 and nitrogen across major terrestrial vegetation types of the world. Most experiments manipulated single rather than multiple global change drivers in temperate ecosystems of the USA, Europe and China. The magnitudes of warming and elevated CO 2 treatments were consistent with the ranges of future projections, whereas those of precipitation changes and nitrogen inputs often exceeded the projected ranges. Increases in global change drivers consistently accelerated, but decreased precipitation slowed down carbon-cycle processes. Nonlinear (including synergistic and antagonistic) effects among global change drivers were rare. Belowground carbon allocation responded negatively to increased precipitation and nitrogen addition and positively to decreased precipitation and elevated CO 2. The sensitivities of carbon variables to multiple global change drivers depended on the background climate and ecosystem condition, suggesting that Earth system models should be evaluated using site-specific conditions for best uses of this large dataset. Together, this synthesis underscores an urgent need to explore the interactions among multiple global change drivers in underrepresented regions such as semi-arid ecosystems, forests in the tropics and subtropics, and Arctic tundra when forecasting future terrestrial carbon-climate feedback.
Elevated CO2 is widely accepted to enhance terrestrial carbon sink, especially in arid and semi‐arid regions. However, great uncertainties exist for the CO2 fertilisation effects, particularly when its interactions with other global change factors are considered. A four‐factor (CO2, temperature, precipitation and nitrogen) experiment revealed that elevated CO2 did not affect either gross ecosystem productivity or ecosystem respiration, and consequently resulted in no changes of net ecosystem productivity in a semi‐arid grassland despite whether temperature, precipitation and nitrogen were elevated or not. The observations could be primarily attributable to the offset of ecosystem carbon uptake by enhanced soil carbon release under CO2 enrichment. Our findings indicate that arid and semi‐arid ecosystems may not be sensitive to CO2 enrichment as previously expected and highlight the urgent need to incorporate this mechanism into most IPCC carbon‐cycle models for convincing projection of terrestrial carbon sink and its feedback to climate change.
Rodent damage is a serious threat to sustainable management of grassland. The effects of nitrogen (N) deposition and grassland management on rodent damage have been scarcely studied. Here, we reported the effects of 2 years of N addition and mowing on burrow density and damage area of Citellus dauricus in a semiarid steppe in Inner Mongolia. N addition significantly aggravated, while mowing alleviated rodent damage in the grassland under study. Burrow density and damage area increased 2.8‐fold and 4.7‐fold, in N addition plots compared to the ambient N addition treatment, respectively. Conversely, mowing decreased burrow density and damage area by 75.9% and 14.5%, respectively, compared to no mowing plots. Observed changes in rodent damage were mainly due to variations in plant community cover, height, and aboveground net primary productivity. Our findings demonstrate that N addition and mowing can affect the rodent density and activity in grassland, suggesting that the effects of a changing atmospheric composition and land use on rodent damage must be considered in order to achieve better grassland management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.