Several bone morphogenetic proteins (BMPs) are expressed in the apical ectodermal ridge (AER), a critical signaling center that directs the outgrowth and patterning of limb mesoderm, but little is known about their function. To study the functions of apical ectodermal BMPs, an AER-specific promoter element from the Msx2 gene was used to target expression of the potent BMP antagonist noggin to the apical ectoderm of the limbs of transgenic mice. Msx2-noggin mutant mice have severely malformed limbs characterized by syndactyly, postaxial polydactyly, and dorsal transformations of ventral structures indicated by absence of ventral footpads and presence of supernumerary ventral nails. Mutant limb buds exhibit a dorsoventral (DV) and anteroposterior (AP) expansion in the extent of the AER. AER activity persists longer than normal and is maintained in regions of the apical ectoderm where its activity normally ceases. Mutant limbs possess a broad band of mesodermal tissue along the distal periphery that is absent from normal limbs and which fails to undergo the apoptosis that normally occurs in the subectodermal mesoderm. Taken together, our results suggest that apical ectodermal BMPs may delimit the boundaries of the AER by preventing adjacent nonridge ectodermal cells from becoming AER cells; negatively modulate AER activity and thus fine-tune the strength of AER signaling; and regulate the apoptosis of the distal subectodermal mesoderm that occurs as AER activity attenuates, an event that is essential for normal limb development. Our results also confirm that ectodermal BMP signaling regulates DV patterning.
Joint formation, the onset of which is characterized by the segmentation of continuous skeletal rudiments into two or more separate elements, is a fundamental aspect of limb pattern formation, playing a critical role in determining the size, shape, and number of individual skeletal elements. Joint formation is initiated by conversion of differentiated chondrocytes at sites of presumptive joints into densely packed nonchondrogenic cells of the joint interzone. This conversion is accompanied by loss of Alcian blue-staining cartilage matrix and downregulation of cartilage-specific gene expression. Here, we report that Cux1, which encodes a transcription factor containing a homeodomain and other DNA-binding motifs, is highly expressed at all of the discrete sites of incipient joint formation in the developing limb concomitant with conversion of differentiated chondrocytes into interzone tissue. Moreover, differentiated limb chondrocytes in micromass cultures infected with a Cux1 retroviral expression vector are converted into nonchondrogenic cells which exhibit loss of Alcian blue cartilage matrix and downregulation of cartilage-specific gene expression as occurs at the onset of normal joint formation. These results suggest that Cux1 is involved in regulating the onset of joint formation by facilitating conversion of chondrocytes into nonchondrogenic cells of the interzone.
Squamous cell carcinoma in situ of the esophagus may be associated with infection by HPV-73.
BACKGROUND Human papillomaviruses (HPVs) commonly cause proliferative lesions of squamous epithelia, and infection with certain HPV types carries a high risk of malignant transformation, especially in the uterine cervix but also at other sites, including the esophagus. We used molecular techniques to detect and type HPV in an in situ squamous cell carcinoma in the esophagus of a 39‐year‐old woman. METHODS DNA was extracted from paraffin sections of the esophageal lesion and of the uterine cervix (which was removed several years earlier), and analyzed for HPV by polymerase chain reaction (PCR). Primers complementary to highly conserved regions of the open reading frame of most genital HPVs were used to amplify a ∼450 base pair product that contained both conserved and divergent regions. The PCR products were hybridized with probes specific for HPV‐6, HPV‐11, HPV‐16, and HPV‐18, and with a consensus probe. A conspicuous band in the esophageal sample failed to hybridize with any of the probes. The amplimer was subcloned and sequenced. The sequence was compared with other known HPVs. RESULTS The intraepithelial neoplasia in the patient's cervical cone biopsy contained HPV‐16. The esophageal lesion contained HPV that did not hybridize with probes for types 6, 11, 16, or 18, but exhibited 98.3% homology with HPV‐73. CONCLUSIONS Squamous cell carcinoma in situ of the esophagus may be associated with infection by HPV‐73. Cancer 1996;77:2440‐4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.