A microgrid consists of electrical generation sources, energy storage assets, loads, and the ability to function independently, or connect and share power with other electrical grids. Thefocus of this work is on the behavior of a microgrid, with both diesel generator and photovoltaic resources, whose heating or cooling loads are influenced by local meteorological conditions. Themicrogrid's fuel consumption and energy storage requirement were then examined as a function of the atmospheric conditions used by its energy management strategy (EMS). A fuel-optimal EMS, able to exploit meteorological forecasts, was developed and evaluated using a hybrid microgrid simulation. Weather forecast update periods ranged from 15 min to 24 h. Four representative meteorological sky classifications (clear, partly cloudy, overcast, or monsoon) were considered. Forall four sky classifications, fuel consumption and energy storage requirements increased linearly with the increasing weather forecast interval. Larger forecast intervals lead to degraded weather forecasts, requiring more frequent charging/discharging of the energy storage, increasing both the fuel consumption and energy storage design requirements. The significant contributions of this work include the optimal EMS and an approach for quantifying the meteorological forecast effects on fuel consumption and energy storage requirements on microgrid performance. The findings of this study indicate that the forecast interval used by the EMS affected both fuel consumption and energy storage requirements, and that the sensitivity of these effects depended on the 24-hour sky conditions.
Approved for public release; distribution is unlimited.ii REPORT DOCUMENTATION PAGE
Form Approved OMB No. 0704-0188Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
The performance of speckle imaging or optical interferometer systems increases with (r0/D)' where r0 is the atmospheric coherence length, D the aperture size and n is between 2 to 4. Since r0 is around 10 cm at visible wavelengths and D may be several meters, selecting a site with a large r0 becomes critical for 30-100 m baseline systems. A unique problem for such optical systems is the need for a relatively, large, flat, =100 m site. This is inconsistent with the atmospheric dynamics that produce optimal sites.
• INTRODUCTIONWe have been measuring the affects of the atmosphere on the transverse coherence length r0 and the atmospheric isoplanatic angle O during the last decade. Optical and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.