A conducting polymer of lignosulfonic acid-grafted, polyaniline-doped camphorsulfonic acid (LS-PANI-CSA), created via a low-temperature solution process, has been explored as an efficient hole-transport layer (HTL) for inverted single cation–anion CH3NH3PbI3 perovskite solar cells. The performance of the solar cell was optimized in this study by tuning the morphology and work function of LS-PANI-CSA films using dimethylsulfoxide (DMSO) as a solvent in treatment. Results showed that DMSO washing enhanced the electronic properties of the LS-PANI-CSA film and increased its hydrophobicity, which is very important for perovskite growth. The perovskite active layer deposited onto the DMSO-treated LS-PANI-CSA layer had higher crystallinity with large grain sizes (>5 μm), more uniform and complete surface coverage, and very low pinhole density and PbI2 residues compared to untreated LS-PANI-CSA. These enhancements result in higher device performance and stability. Using DMSO-treated LS-PANI-CSA as an HTL at 15 nm of thickness, a maximum 10.8% power conversion efficiency was obtained in ITO/LS-PANI-CSA/MAPbI3/PCBM/BCP/Ag inverted-device configurations. This was a significant improvement compared to 5.18% for devices based on untreated LS-PANI-CSA and a slight improvement over PEDOT:PSS-based devices with 9.48%. Furthermore, the perovskite based on treated LS-PANI-CSA showed the higher stability compared to both untreated LS-PANI-CSA and PEDOT:PSS HTL-based devices.
As the need for green energy increases, particularly solar energy, perovskite‐based devices have become a promising alternative to more complex, costly semiconductor‐based photovoltaic devices. The major advantage of perovskite‐based devices is their relatively facile fabrication as a thin film at fairly low temperatures and their tunable optoelectronic properties. The chemical composition of perovskite structures, solvent and heat treatments used in processing, additives, and deposition methods produce films with different morphologies. Their ability to be used with other organic and inorganic subcells makes them a useful component for an efficient, cost‐effective approach to harvest solar energy. This review presents some of the latest approaches and considerations for the fabrication, architecture, and performance of perovskite‐based solar cells. Various perovskite device architectures are discussed, as well as the effects of environmental conditions on performance and degradation.
Cesium formadinium methylammonium triple-cation (CsFAMA) lead mixed-halide perovskites have been reported to promote unique photovoltaic properties with high efficiency and minimal hysteresis effects. Perovskite film quality is a vital parameter for improving the performance of perovskite solar cells (PSCs). Here, we report the growth of CsFAMA perovskites with microscale grains passivation grain boundaries by mixing HC(NH2)2I (FAI) and CH3NH3Br (MABr) in isopropanol (IPA) as a post-treatment step to cause controlled Ostwald ripening, leading to secondary grain growth. Compared to the conventional preparation of perovskite films with a free organic halide antisolvent, this mixed-cation mixed-halide post-treatment created higher quality perovskite films in terms of morphology, electronic properties, energy level alignment, and carrier recombination, with the band gap adjusted at the optimal concentration. Treatment with the single cation and single halide presented by FAI and/or MABr in IPA treatment was also investigated, and the results showed that multiple band gap perovskite structures were obtained, which could be beneficial for band gap engineering. This method of perovskite preparation was tested in an inverted planar configuration with a hole transport layer (HTL) based on sulfonated poly(thiophene-3-[2-(2-methoxy-ethoxy)ethoxy]-2,5-diyl) (SP3MEET). The efficiency of the PSCs was dramatically boosted from 13.80% with the organic halide-free antisolvent to 17.62% when the mixed-cation mixed-halide approach was used. In addition, the PSCs treated with the mixed-cation mixed-halide solution exhibited excellent reproducibility, with a high fill factor and eliminated hysteresis. The CsFAMA photovoltaic device based on the single organic cation and single halide treatment approach showed power conversion efficiency of 15.82 and 15.90% for the FAI and MABr-treated films, respectively. Characterization of the S-P3MEET as HTLs found that good optoelectronic and morphological properties lead to improve the performance of the inverted PSC. However, with further research to align the energy levels at the S-P3MEET/perovskite interface, greater improvements in the PSCs are expected.
The solar energy field is in need of better inverted planar perovskite solar cells that feature proper energy level alignment, efficient carrier transport in the hole transport layers, and a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.