The most polymorphic chromosome for inversions in Drosophila mediopunctata is the chromosome II, where 17 inversions have been found, eight of which occurring in the distal region and nine in the proximal region. We present an analysis of the chromosome II inversion polymorphism with respect to seasonal, altitudinal and latitudinal variation. In D. mediopunctata from the Parque Nacional do Itatiaia (southeastern Brazil), the frequencies of three of the distal inversions (namely DA, DS, and DP) vary seasonally. These inversions also show altitudinal clines in their frequencies. This microgeographic pattern was not observed on a macrogeographic scale. D. mediopunctata from Porto Alegre are less polymorphic for inversions than other populations, the most remarkable reduction occurring in the proximal region of chromosome II. There is a considerable difference between D. mediopunctata from Campinas and specimens from Serra do Japi, which are separated by only 50 km. In contrast, D. mediopunctata from Serra do Japi are much more similar to specimens from the Parque Nacional do Itatiaia, which is 200 km far.
To investigate the size and shape of the aedeagus of Drosophila mediopunctata, we used basic statistics and geometric morphometrics. We estimated the level of phenotypic variation, natural and laboratory heritability as well as the phenotypic correlations between aedeagus and wing measures. The wing was used as an indicator for both body size and shape. Positive significant correlation was obtained for centroid size of aedeagus and wing for field parents and their offspring reared in the laboratory. Many positive significant phenotypic correlations were found among linear measures of both organs. The phenotypic correlations were few for aedeagus and wing shape. Coefficients of variation of the measures were on average larger in the aedeagus than in the wing for offspring reared in laboratory, but not for flies coming from the field. Significant "natural" heritabilities were found for five linear measures of the aedeagus and only one for the wing. Few significant heritabilities were found for aedeagus and wing shape, mostly ones concerning the uniform components. In an exploratory analysis, we found that inversion DS-PC0 is associated with both uniform and nonuniform components of shape, respectively, in the wing and aedeagus. Our results do not support the lock-and-key hypothesis for the male genitalia evolution, but cannot refute the sexual selection and pleiotropy hypotheses.
Zaprionus indianus is a recent invader in Brazil and was probably introduced from the West Afrotropical zone. So far, studies regarding its chromosomal polymorphism were limited to India. We found that Brazilian populations were very different from Indian ones. Five new inversions have been discovered. In(II)A, already described in India, where it is quite common, has also been found in Brazil, where it is very rare. The X-chromosome has three inversions; In(X)Na, In(X)Ke and In(X)Eg, which are frequent in all Brazilian populations studied. In every case, we observed strong linkage disequilibrium among these gene arrangements. During the primary collection period (2001-2002), we noticed a significant positive correlation between the frequency of these inversions and latitude, but this was not confirmed in later investigations. Rearrangement In(IV)EF was also common in all populations, while inversion In(V)B was only found in southern populations. Our data suggest that the founders that recently invaded Brazil were polymorphic for the six inversions observed. The place of origin might be identified more precisely by investigating West African populations. In order to facilitate further investigations, we present an updated polytene chromosome photomap, locating the breakpoints of every inversion observed in Brazilian populations.
Several long-term studies on Drosophila chromosome inversion polymorphisms have shown that inversions can be a valuable tool to monitor rapid genetic shifts with climate change. However, so far, no study has assessed the effects of climate change in populations of Neotropical Drosophila species. After more than 2 decades, new samples were collected from the Parque Nacional do Itatiaia, Rio de Janeiro, to assess any changes in inversion frequencies and to detect possible global warming effects on the inversion polymorphism of the second chromosome of D. mediopunctata. Our results show unexpected simultaneous changes in inversion frequencies associated with climate change. Perhaps climatic variables other than temperature underlying the process caused such change, although potential genetic drift effects or demographic factors cannot be excluded. Further studies assessing population genetic structure may help clarify the changes observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.