BACKGROUND/CONTEXT: Disc degeneration (DD) is a significant driver of low back pain and few treatments exist to treat the pain and disability associated with the disease. PURPOSE: Our group has developed a method to generate therapeutic discogenic cells as a potential treatment for symptomatic DD. These cells are derived and modified from adult nucleus pulposus cells. In this study, we evaluated the characteristics, mode of action, and in vivo efficacy and safety of these cells prior to human clinical testing. STUDY DESIGN: Privately funded in vitro studies and in vivo preclinical models were used in this study. METHODS: Discogenic cells generated from different adult human donors were evaluated for surface marker expression profile, matrix deposition and tumorigenic potential. Discogenic cells were then injected subcutaneously into nude mice to assess cell survival and possible extracellular matrix production in vivo. Finally, a rabbit model of DD was used to evaluate the therapeutic potential of discogenic cells after disc injury. RESULTS: We found that discogenic cells have a consistent surface marker profile, are multipotent for mesenchymal lineages, and produce extracellular matrix consisting of aggrecan, collagen 1 and collagen 2. Cells did not show abnormal karyotype after culturing and did not form tumor-like aggregates in soft agar. After subcutaneous implantation in a nude mouse model, the human discogenic cells were found to have generated regions rich with extracellular matrix over the course of 4 months, with no signs of tumorigenicity. Intradiscal injection of human discogenic cells in a rabbit model of DD caused an increase in disc height and improvement of tissue architecture relative to control discs or injection of vehicle alone (no cells) with no signs of toxicity. CONCLUSIONS: This study demonstrates that intradiscal injection of discogenic cells may be a viable treatment for human degenerative disc disease. The cells produce extracellular matrix that FDA device/drug status: Not applicable.
Low back pain (LBP) is a serious medical condition that affects a large percentage of the population worldwide. One cause of LBP is disc degeneration (DD), which is characterized by progressive breakdown of the disc and an inflamed disc environment. Current treatment options for patients with symptomatic DD are limited and are often unsuccessful, so many patients turn to prescription opioids for pain management in a time when opioid usage, addiction, and drug-related deaths are at an all-time high. In this paper, we discuss the etiology of lumbar DD and currently available treatments, as well as the potential for cell therapy to offer a biologic, non-opioid alternative to patients suffering from the condition. Finally, we present an overview of an investigational cell therapy called IDCT (Injectable Discogenic Cell Therapy), which is currently under evaluation in multiple double-blind clinical trials overseen by major regulatory agencies. The active ingredient in IDCT is a novel allogeneic cell population known as Discogenic Cells. These cells, which are derived from intervertebral disc tissue, have been shown to possess both regenerative and immunomodulatory properties. Cell therapies have unique properties that may ultimately lead to decreased pain and improved function, as well as curb the numbers of patients pursuing opioids. Their efficacy is best assessed in rigorous double-blinded and placebo-controlled clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.