Caffeic acid phenethyl ester, an active component of propolis extract, inhibits Yipoxygenase in the micromolar concentration range. The inhibition is of an uncompetitive type, i.e. the inhibitor binds to the enzyme-substrate complex but not to the free enzyme. Caffeic acid phenethyl ester also exhibits antioxidant properties. At a concentration of 10 PM, it completely blocks production of reactive oxygen species in human neutrophils and the xanthinelxanthine oxidase system.
Nitric oxide (NO) plays an important role in host defense against bacterial infections such as salmonellosis. NO and 4-bromophenacyl bromide (BPB) induce the formation of long tubulovesicular extensions (TVE, cytonemes, membrane tethers) from human neutrophils. These TVE serve as cellular sensory and adhesive organelles. In the present study, we demonstrated that in the presence of the NO donor, diethylamine NONOate or BPB human neutrophils bound and aggregated Salmonella enterica serovar Typhimurium bacteria extracellularly by TVE. In contrast, inhibition of NO-synthase activity by N(omega)-nitro-L-arginine methyl ester stimulated neutrophil phagocytosis (ingestion) of bacteria. Neutrophil TVE consisted of membrane-covered cytoplasm as was shown by the fluorescent cytoplasmic dye 2',7'-bis(2carboxyethyl)-5,(6)-carboxyfluorescein, and the fluorescent lipid, BODIPY-labeled sulfatide. Disruption and shedding of TVE were accompanied by the appearance of specific invaginations (porosomes) on neutrophil cell bodies. These invaginations corresponded to the variations in diameter of TVE (160-240 nm). We hypothesized that TVE represented protrusions of neutrophil exocytotic trafficking through special structures on the neutrophil surface. In conclusion, we propose a novel mechanism by which NO-induced TVE formation enables neutrophils to bind and aggregate bacteria at a distance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.