Introduction. Pectin-based protective coatings can produce a perfect biodegradable edible film. Secondary watermelon raw materials are a promising resource for this type of food coating as it contains 13.4% of pectin components, of which 8.1% is protopectin. The present research objective was to find the density and thermophysical characteristics of the pectin extract in order to optimize the drying process.
Study objects and methods. The research featured a pectin extract from watermelon rind. Its thermophysical properties were defined according to the thermocouple inertia method. The calorimetric method was used to change the aggregation state, while the pycnometric method was applied to calculate the density. The method of criterion equations helped to define the heat transfer coefficient.
Results and discussion. The average density of the final film material was 652 kg/m3 and that of the liquid semi-finished product was 1,028 kg/m3. The research also revealed the dependence of physical density and humidity W, heat capacity, thermal diffusivity, and thermal conductivity. For different W, averaged were 3393, 3225, 3137, and 3113, respectively. The study also provided the criterion dependence for determining the heat transfer coefficient and modified α on the speed of the air coolant for artificial convection at conventional coolant temperature (≈ 100°C) in contact with the food product surface (≈ 80°C).
Conclusion. The article introduces the thermophysical characteristics and physical density of watermelon gel for various humidity and thermal agent parameters, as well as a modified criterion dependence for determining the heat transfer coefficient. The research results can be used to design dehydration operations, other thermophysical processes, and their equipment.
The development of protective coatings based on pectin substances that serve as natural structure-forming agents developed from a secondary resource base is focused on removing a complex problem in the production of finished products by deep processing of basic raw materials and developing an original film material. At the same time, the technical result of obtaining pectin-containing film structures is their ability to protect food products from microbiological spoilage, natural losses during storage and the preservation of quality and safety indicators. An important preparatory procedure that determines the efficiency and intensity of extraction processes can be attributed to the operation of dispersing the feedstock, since it directly affects the size of the contact surface area of the phases involved in mass transfer. However, it is clear that the greater the degree of grinding, the higher the efficiency of the process, but an excessive increase can lead to additional unjustified energy costs and, as a result, to an increase in the cost of the finished products sold. In this regard, the purpose of the research is to analyze existing technologies for producing pectin-containing extracts, in which watermelon rinds can be used as secondary resources and to intensify the extraction process by conducting a rational preparatory procedure for grinding the raw materials. The object of the research are watermelon rinds as non-recyclable waste from processing watermelon raw materials. According to the obtained graphs, and taking into account the high rates of gelatinization of the obtained pectin extracts, it is possible to recommend a complex treatment of watermelon rinds, including, in addition to the operations of preliminary preparation of raw materials, ultrasonic exposure and acid hydrolysis, and it is desirable to use food acids, for example, acetic or citric, instead of aggressive sulfuric and hydrochloric acids. As a result of the study of the dispersed composition, it has been concluded that the average equivalent particle size of the dispersed raw materials does not exceed the recommended limits, that is, the result obtained can be considered acceptable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.