To meet mounting water demands, treated wastewater has become an important source of irrigation. Thus, contamination of treated wastewater by pharmaceutical compounds (PCs) and the fate of these compounds in the agricultural environment are of increasing concern. This field study aimed to quantify PC uptake by treated wastewater-irrigated root crops (carrots and sweet potatoes) grown in lysimeters and to evaluate potential risks. In both crops, the nonionic PCs (carbamazepine, caffeine, and lamotrigine) were detected at significantly higher concentrations than ionic PCs (metoprolol, bezafibrate, clofibric acid, diclofenac, gemfibrozil, ibuprofen, ketoprofen, naproxen, sulfamethoxazole, and sildenafil). PCs in leaves were found at higher concentrations than in the roots. Carbamazepine metabolites were found mainly in the leaves, where the concentration of the metabolite 10,11-epoxycarbamazepine was significantly higher than the parent compound. The health risk associated with consumption of wastewater-irrigated root vegetables was estimated using the threshold of toxicological concern (TTC) approach. Our data show that the TTC value of lamotrigine can be reached for a child at a daily consumption of half a carrot (∼60 g). This study highlights that certain PCs accumulated in edible organs at concentrations above the TTC value should be categorized as contaminants of emerging concern.
Fresh water scarcity has led to increased use of reclaimed wastewater as an alternative and reliable source for crop irrigation. Beyond microbiological safety, concerns have been raised regarding contamination of reclaimed wastewater by xenobiotics including pharmaceuticals. This study focuses on carbamazepine, an anticonvulsant drug which is ubiquitously detected in reclaimed wastewater, highly persistent in soil, and taken up by crops. In a randomized controlled trial we demonstrate that healthy individuals consuming reclaimed wastewater-irrigated produce excreted carbamazepine and its metabolites in their urine, while subjects consuming fresh water-irrigated produce excreted undetectable or significantly lower levels of carbamazepine. We also report that the carbamazepine metabolite pattern at this low exposure level differed from that observed at therapeutic doses. This "proof of concept" study demonstrates that human exposure to xenobiotics occurs through ingestion of reclaimed wastewater-irrigated produce, providing real world data which could guide risk assessments and policy designed to ensure the safe use of wastewater for crop irrigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.