The concept of the alkaline activity of powdered materials introduced into cement compositions has been proposed, along with methods for its determination. The possibility of using waste glass as an active additive to Portland cement was evaluated from the standpoint of alkaline activity. Replacing the Portland cement component with glass waste in the form of glass powder at amounts from 1 to 35% made it possible to maintain the cement composition’s alkaline activity at a level that met the standard requirements. The previously unknown effects of mixed alkali in Portland cement in the presence of glass waste are described. Portland cement has a high potassium alkaline activity; however, container glass has a high sodium alkaline activity and a fairly low potassium alkaline activity. When glass waste is introduced into the structure of cement compositions, potassium alkaline activity is reduced.
Abstract. 1 The effect of alkaline component in glass powder on the total alkaline content of cement-glass mixtures, which is limited by standards, has been investigated by means of pH-metry, titration and different extragents. Using experimental and calculated results concerning alkaline activity of glass powder it is possible to develop chemical structure of the cement composites which would meet the standards in regard to total alkaline content.
This article presents a study of the effect of water glass and its introduction on the hydration of Portland cement and its properties in plastic and solid states. The introduction of sodium water glass into the mixing water extends the setting time of Portland cement by 35%, while introduction into the cement paste reduces it by 24.4%; for potassium water glass, the respective values are 10.8% and 10.8%. The introduction of sodium water glass into the mixing water decreases its consistency by 17.6%; its introduction into the cement paste reduces its consistency by 97%. Based on microcalorimetric studies and using the modelling method, mechanisms of the processes occurring in the cement paste, for various methods of introducing water glass admixtures, and their influence on the properties of cement are proposed. The important implications of the obtained results are that, using various methods for introducing admixtures of water glass, it is possible to regulate the setting of cement slurries within significant limits that are important during their transportation.
Abstract. The usage of fine grinded silicate glass as an active additive to Portland cement has been considered in order to substitute neat cement in the cement composition, just as it is in EN 197-1 European standard by the example of active mineral additives of natural and artificial origin.
Application of nano-materials in cement products significantly, improves their properties. Of course, the effectiveness of the materials depends on their quantity and the way they are introduced into the system. So far, amongst nano-materials used in construction, the most preferred was nano-silica. This research investigated the effect of synthetic precipitated nano-silica on the cement hydration as well as, on the physical and mechanical properties of pastes and mortars. Obtained results showed that admixture of nano-silica enhanced flexural and compressive strength of cement after 2 and 28 days, however, only when admixture made up 0.5% and 1.0%. On the other hand, the use of nano-silica in the amount 2% had some limitations, due to its ability to agglomerate, which resulted in deterioration of the rheological and mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.