The outbreak of coronavirus disease (COVID-19) not only affected health and economics, but also its effect extended to include other aspects, such as the environment. Using Egypt as a case study, this paper presents the impact of COVID-19 pandemic on air pollution levels by studying nitrogen dioxide (NO 2 ), ozone (O 3 ), particulate matter represented in absorbing aerosol index (AAI), carbon monoxide (CO), and greenhouse gas (GHG) emissions. The paper also highlights the impact of COVID-19 pandemic on other environmental indicators including environmental noise, medical and municipal solid wastes. The paper presents the Egyptian COVID-19 story from its different angles including the development of confirmed COVID-19 cases, containment measures from the government, the impact on the country’s economy and the national energy consumption so as to effectively evaluate the effect on both the air pollution levels and the other studied environmental indicators. For the other environmental indicators, a strong link was observed between COVID-19 lockdown and the reduction in environmental noise, beaches, surface and groundwater pollution. For environmental noise, this has been confirmed by officially governmental announcements which reported that the level of environmental noise in Egypt was reduced by about 75% during the lockdown period. On the other hand, there are some negative effects, including an increase in medical solid waste (from 70 to 300 ton/day), municipal solid waste, as well as a less efficient solid waste recycling process. For air pollution levels, the data were obtained from National Aeronautics and Space Administration (NASA) and European Space Agency satellite data sets. The data for the lockdown period in 2020 have been extracted and compared to the corresponding months in the selected baseline period (2015-2019) to identify the effect that the lockdown period had on the air pollution levels in Egypt with focus on Cairo and Alexandria governorates. It was found that the AAI decreased by about 30%, the NO 2 decreased by 15 and 33% over Cairo and Alexandria governorates, respectively, and that the CO decreased by about 5% over both governorates. In addition, the GHG emissions in Egypt were reduced by at least 4% during the pandemic. In contrast, ozone levels increased by about 2% over Cairo and Alexandria governorates. It can be concluded that the implemented containment measures during COVID-19 pandemic had resulted in both positive and negative environmental impacts. The positive environmental impacts are not sustainable and deterioration on them is expected to occur after the lockdown as it was before the pandemic. Therefore, stricter laws must be enacted to protect the environment in Egypt.
This study investigates the impact of the COVID-19 pandemic and the Ever Given ship blockage on the air quality in Suez Canal region. Nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and aerosol optical depth (AOD) were studied, and data were obtained from satellite instruments. The study compared monthly average data for 2020, 2021, and 2022 with a baseline period of 2017–2019 to investigate the pandemic’s effect. The study also analyzed the corresponding period of the canal blockage to identify its impact on air pollution levels. The pandemic had a significant role in decreasing NO2 by 2.5 × 1014 molecule/cm2 and SO2 by 0.05 DU due to reduced car traffic and industrial activities. A reduction in AOD by 20% and CO concentration in the range from 3.5% to 4.7% was reported in early 2020. During the blockage, NO2 and SO2 levels decreased by 14.4% and 66.0%, respectively, while CO and AOD index increased by 12.68% and 51.0%, respectively. The study concludes that the containment measures during the pandemic had a positive impact on the environment, which shows how the reduction in the anthropogenic activities, especially industrial and transportation activities, have improved the air quality. Thus, stricter actions are needed to protect the environment; for example, the transition towards the using of electric vehicle is necessary, which is part of Egypt’s strategy to transition towards a green economy. The government should also adopt a policy to trade carbon emissions reduction certificates to help reduce air pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.