Covalent probes can
display unmatched potency, selectivity, and
duration of action; however, their discovery is challenging. In principle,
fragments that can irreversibly bind their target can overcome the
low affinity that limits reversible fragment screening, but such electrophilic
fragments were considered nonselective and were rarely screened. We
hypothesized that mild electrophiles might overcome the selectivity
challenge and constructed a library of 993 mildly electrophilic fragments.
We characterized this library by a new high-throughput thiol-reactivity
assay and screened them against 10 cysteine-containing proteins. Highly
reactive and promiscuous fragments were rare and could be easily eliminated.
In contrast, we found hits for most targets. Combining our approach
with high-throughput crystallography allowed rapid progression to
potent and selective probes for two enzymes, the deubiquitinase OTUB2
and the pyrophosphatase NUDT7. No inhibitors were previously known
for either. This study highlights the potential of electrophile-fragment
screening as a practical and efficient tool for covalent-ligand discovery.
In this work, improved solar cells from aqueous CdTe NCs is achieved by replacing evaporated MoOx with spiro-OMeTAD as a hole transfer layer. The increased Voc and Jsc can be attributed to interfacial dipole effect and reduced back recombination loss, respectively. A high PCE of 6.56% for solar cells from aqueous NCs is obtained by optimizing the microstructure further.
Manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment during infection. Kaposi’s sarcoma-associated herpesvirus (KSHV), the primary etiological agent of several human malignancies including Kaposi’s sarcoma, and primary effusion lymphoma, encodes several oncoproteins that deregulate normal physiology of cell cycle machinery to persist with endothelial cells and B cells and subsequently establish a latent infection. During latency, only a small subset of viral proteins is expressed. Latency-associated nuclear antigen (LANA) is one of the latent antigens shown to be essential for transformation of endothelial cells in vitro. It has been well demonstrated that LANA is critical for the maintenance of latency, episome DNA replication, segregation and gene transcription. In this review, we summarize recent studies and address how LANA functions as an oncoprotein to steer host cell cycle-related events including proliferation and apoptosis by interacting with various cellular and viral factors, and highlight the potential therapeutic strategy of disrupting LANA-dependent signaling as targets in KSHV-associated cancers.
Aqueous processed nanocrystal (NC) solar cells are attractive due to their environmental friendliness and cost effectiveness. Controlling the bandgap of absorbing layers is critical for achieving high efficiency for single and multijunction solar cells. Herein, we tune the bandgap of CdTe through the incorporation of Se via aqueous process. The photovoltaic performance of aqueous CdSexTe1-x NCs is systematically investigated, and the impacts of charge generation, transport, and injection on device performance for different compositions are deeply discussed. We discover that the performance degrades with the increasing Se content from CdTe to CdSe. This is mainly ascribed to the lower conduction band (CB) of CdSexTe1-x with higher Se content, which reduces the driving force for electron injection into TiO2. Finally, the performance is improved by mixing CdSexTe1-x NCs with conjugated polymer poly(p-phenylenevinylene) (PPV), and power conversion efficiency (PCE) of 3.35% is achieved based on ternary NCs. This work may provide some information to further optimize the aqueous-processed NC and hybrid solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.