This paper proposes a stair walking detection via Long-short Term Memory (LSTM) network to prevent stair fall event happen by alerting caregiver for assistance as soon as possible. The tri-axial accelerometer and gyroscope data of five activities of daily living (ADLs) including stair walking is collected from 20 subjects with wearable inertial sensors on the left heel, right heel, chest, left wrist and right wrist. Several parameters which are window size, sensor deployment, number of hidden cell unit and LSTM architecture were varied in finding an optimized LSTM model for stair walking detection. As the result, the best model in detecting stair walking event that achieve 95.6% testing accuracy is double layered LSTM with 250 hidden cell units that is fed with data from all sensor locations with window size of 2 seconds. The result also shows that with similar detection model but fed with single sensor data, the model can achieve very good performance which is above 83.2%. It should be possible, therefore, to integrate the proposed detection model for fall prevention especially among patients or elderly in helping to alert the caregiver when stair walking event occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.