<p class="Abstract">Sport performance analysis which is crucial in sport practice is used to improve the performance of athletes during the games. Many studies and investigation have been done in detecting different movements of player for notational analysis using either sensor based or video based modality. Recently, vision based modality has become the research interest due to the vast development of video transmission online. There are tremendous experimental studies have been done using vision based modality in sport but only a few review study has been done previously. Hence, we provide a review study on the video based technique to recognize sport action toward establishing the automated notational analysis system. The paper will be organized into four parts. Firstly, we provide an overview of the current existing technologies of the video based sports intelligence systems. Secondly, we review the framework of action recognition in all fields before we further discuss the implementation of deep learning in vision based modality for sport actions. Finally, the paper summarizes the further trend and research direction in action recognition for sports using video approach. We believed that this review study would be very beneficial in providing a complete overview on video based action recognition in sports.</p>
This paper proposes a stair walking detection via Long-short Term Memory (LSTM) network to prevent stair fall event happen by alerting caregiver for assistance as soon as possible. The tri-axial accelerometer and gyroscope data of five activities of daily living (ADLs) including stair walking is collected from 20 subjects with wearable inertial sensors on the left heel, right heel, chest, left wrist and right wrist. Several parameters which are window size, sensor deployment, number of hidden cell unit and LSTM architecture were varied in finding an optimized LSTM model for stair walking detection. As the result, the best model in detecting stair walking event that achieve 95.6% testing accuracy is double layered LSTM with 250 hidden cell units that is fed with data from all sensor locations with window size of 2 seconds. The result also shows that with similar detection model but fed with single sensor data, the model can achieve very good performance which is above 83.2%. It should be possible, therefore, to integrate the proposed detection model for fall prevention especially among patients or elderly in helping to alert the caregiver when stair walking event occur.
Having a systemic system in recognizing activity in sports is very essential along with enhancing the performance analysis in sport. As the system is required to provide a quality, reliable and unbiased notational data for determining the strength and weakness of field hockey players. Therefore, this study is analysing the accelerometer and gyroscope signal on of the four inertial sensors attached to the upper body chest, waist, right and left wrist and formulate the best model in using the wearable sensor for human activity recognition in the field hockey which are passing, drive, drag flick, dribbling, receiving and tackling. Set of features such as mean, standard deviation, maximum and minimum peak are extracted from each inertial sensor signal as an input vector for classification purpose. Results from the study shows that the recognition using combination of all four sensors achieved the highest performance of 96.7% accuracy; and waist and left wrist is recommended if single sensor based human activity recognition is preferred.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.