So far, most theoretically predicted and experimentally confirmed quantum anomalous Hall effect (QAHE) are limited in two-dimensional (2D) materials with out-of-plane magnetization. In this Letter, starting from 2D nodal-line semimetal, a general rule for searching QAHE with in-plane magnetization is mapped out. Due to the spin-orbital-coupling, we found that the magnetization will prefer an in-plane orientation if the orbital of degenerate nodal-line states at Fermi-level have the same absolute value of magnetic quantum number. Moreover, depending on the broken or conserved mirror symmetry, either QAHE or 2D semimetal can be realized. Based on first principles calculations, we further predict a real material of monolayer LaCl to be an intrinsic QAHE with in-plane magnetization. By tuning the directions of in-plane magnetization, the QAHE in LaCl demonstrates a threefold rotational symmetry with Chern number of either +1 or −1, and the transition point is characterized by a 2D semimetal phase. All these features are quantitatively reproduced by tight-binding model calculations, revealing the underlying physics clearly. Our results greatly extend the scope for material classes of QAHE, and hence stimulate immediate experimental interests.
Two-dimensional quadrupole topological insulator (2D QTI), as a new class of second-order topological phases, has been experimentally confirmed in various artificial systems recently. However, its realization in electronic materials has seldom been reported. In this work, we predict that the experimentally synthesized γ-graphyne is a large-gap (∼0.2 eV) 2D QTI. Three characterized features for 2D QTI are simultaneously observed in γ-graphyne: quantized finite bulk quadrupole moment, gapped topological edge states, and in-gap topological corner states. Intriguingly, we found that gapped topological edge states exist on armchair edge with CC (but not CC) termination, and in-gap topological corner states exist at corner with 120° (but not 60°) termination, which can be explained by different edge-hopping textures and corner chiral charges. Moreover, the robustness of in-gap topological corner states is further identified by varying edge-disorder and system-size calculations. Our results demonstrate a realistic electronic material for large-gap 2D QTI, which is expected to draw immediate experimental attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.