BERT is a recent language representation model that has surprisingly performed well in diverse language understanding benchmarks. This result indicates the possibility that BERT networks capture structural information about language. In this work, we provide novel support for this claim by performing a series of experiments to unpack the elements of English language structure learned by BERT. We first show that BERT's phrasal representation captures phrase-level information in the lower layers. We also show that BERT's intermediate layers encode a rich hierarchy of linguistic information, with surface features at the bottom, syntactic features in the middle and semantic features at the top. BERT turns out to require deeper layers when long-distance dependency information is required, e.g. to track subjectverb agreement. Finally, we show that BERT representations capture linguistic information in a compositional way that mimics classical, tree-like structures.
Text generative models (TGMs) excel in producing text that matches the style of human language reasonably well. Such TGMs can be misused by adversaries, e.g., by automatically generating fake news and fake product reviews that can look authentic and fool humans. Detectors that can distinguish text generated by TGM from human written text play a vital role in mitigating such misuse of TGMs. Recently, there has been a flurry of works from both natural language processing (NLP) and machine learning (ML) communities to build accurate detectors for English. Despite the importance of this problem, there is currently no work that surveys this fast-growing literature and introduces newcomers to important research challenges. In this work, we fill this void by providing a critical survey and review of this literature to facilitate a comprehensive understanding of this problem. We conduct an in-depth error analysis of the state-of-the-art detector and discuss research directions to guide future work in this exciting area.
The problem of comparing two bodies of text and searching for words that differ in their usage between them arises often in digital humanities and computational social science. This is commonly approached by training word embeddings on each corpus, aligning the vector spaces, and looking for words whose cosine distance in the aligned space is large. However, these methods often require extensive filtering of the vocabulary to perform well, and-as we show in this work-result in unstable, and hence less reliable, results. We propose an alternative approach that does not use vector space alignment, and instead considers the neighbors of each word. The method is simple, interpretable and stable. We demonstrate its effectiveness in 9 different setups, considering different corpus splitting criteria (age, gender and profession of tweet authors, time of tweet) and different languages (English, French and Hebrew).
We describe models focused at the understudied problem of translating between monolingual and code-mixed language pairs. More specifically, we offer a wide range of models that convert monolingual English text into Hinglish (code-mixed Hindi and English). Given the recent success of pretrained language models, we also test the utility of two recent Transformer-based encoder-decoder models (i.e., mT5 and mBART) on the task finding both to work well. Given the paucity of training data for code-mixing, we also propose a dependency-free method for generating code-mixed texts from bilingual distributed representations that we exploit for improving language model performance. In particular, armed with this additional data, we adopt a curriculum learning approach where we first finetune the language models on synthetic data then on gold code-mixed data. We find that, although simple, our synthetic code-mixing method is competitive with (and in some cases is even superior to) several standard methods (backtranslation, method based on equivalence constraint theory) under a diverse set of conditions. Our work shows that the mT5 model, finetuned following the curriculum learning procedure, achieves best translation performance (12.67 BLEU). Our models place first in the overall ranking of the English-Hinglish official shared task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.