In recent times, the growth of the Internet of Things (IoT), artificial intelligence (AI), and Blockchain technologies have quickly gained pace as a new study niche in numerous collegiate and industrial sectors, notably in the healthcare sector. Recent advancements in healthcare delivery have given many patients access to advanced personalized healthcare, which has improved their well-being. The subsequent phase in healthcare is to seamlessly consolidate these emerging technologies such as IoT-assisted wearable sensor devices, AI, and Blockchain collectively. Surprisingly, owing to the rapid use of smart wearable sensors, IoT and AI-enabled technology are shifting healthcare from a conventional hub-based system to a more personalized healthcare management system (HMS). However, implementing smart sensors, advanced IoT, AI, and Blockchain technologies synchronously in HMS remains a significant challenge. Prominent and reoccurring issues such as scarcity of cost-effective and accurate smart medical sensors, unstandardized IoT system architectures, heterogeneity of connected wearable devices, the multidimensionality of data generated, and high demand for interoperability are vivid problems affecting the advancement of HMS. Hence, this survey paper presents a detailed evaluation of the application of these emerging technologies (Smart Sensor, IoT, AI, Blockchain) in HMS to better understand the progress thus far. Specifically, current studies and findings on the deployment of these emerging technologies in healthcare are investigated, as well as key enabling factors, noteworthy use cases, and successful deployments. This survey also examined essential issues that are frequently encountered by IoT-assisted wearable sensor systems, AI, and Blockchain, as well as the critical concerns that must be addressed to enhance the application of these emerging technologies in the HMS.
Selecting the most suitable filter method that will produce a subset of features with the best performance remains an open problem that is known as filter rank selection problem. A viable solution to this problem is to independently apply a mixture of filter methods and evaluate the results. This study proposes novel rank aggregation-based multi-filter feature selection (FS) methods to address high dimensionality and filter rank selection problem in software defect prediction (SDP). The proposed methods combine rank lists generated by individual filter methods using rank aggregation mechanisms into a single aggregated rank list. The proposed methods aim to resolve the filter selection problem by using multiple filter methods of diverse computational characteristics to produce a dis-joint and complete feature rank list superior to individual filter rank methods. The effectiveness of the proposed method was evaluated with Decision Tree (DT) and Naïve Bayes (NB) models on defect datasets from NASA repository. From the experimental results, the proposed methods had a superior impact (positive) on prediction performances of NB and DT models than other experimented FS methods. This makes the combination of filter rank methods a viable solution to filter rank selection problem and enhancement of prediction models in SDP.
As data size increases drastically, its variety also increases. Investigating such heterogeneous data is one of the most challenging tasks in information management and data analytics. The heterogeneity and decentralization of data sources affect data visualization and prediction, thereby influencing analytical results accordingly. Data harmonization (DH) corresponds to a field that unifies the representation of such a disparate nature of data. Over the years, multiple solutions have been developed to minimize the heterogeneity aspects and disparity in formats of big-data types. In this study, a systematic review of the literature was conducted to assess the state-of-the-art DH techniques. This study aimed to understand the issues faced due to heterogeneity, the need for DH and the techniques that deal with substantial heterogeneous textual datasets. The process produced 1355 articles, but among them, only 70 articles were found to be relevant through inclusion and exclusion criteria methods. The result shows that the heterogeneity of structured, semi-structured, and unstructured (SSU) data can be managed by using DH and its core techniques, such as text preprocessing, Natural Language Preprocessing (NLP), machine learning (ML), and deep learning (DL). These techniques are applied to many real-world applications centered on the information-retrieval domain. Several assessment criteria were implemented to measure the efficiency of these techniques, such as precision, recall, F-1, accuracy, and time. A detailed explanation of each research question, common techniques, and performance measures is also discussed. Lastly, we present readers with a detailed discussion of the existing work, contributions, and managerial and academic implications, along with the conclusion, limitations, and future research directions.
Within the ever-growing healthcare industry, dental informatics is a burgeoning field of study. One of the major obstacles to the health care system’s transformation is obtaining knowledge and insightful data from complex, high-dimensional, and diverse sources. Modern biomedical research, for instance, has seen an increase in the use of complex, heterogeneous, poorly documented, and generally unstructured electronic health records, imaging, sensor data, and text. There were still certain restrictions even after many current techniques were used to extract more robust and useful elements from the data for analysis. New effective paradigms for building end-to-end learning models from complex data are provided by the most recent deep learning technology breakthroughs. Therefore, the current study aims to examine the most recent research on the use of deep learning techniques for dental informatics problems and recommend creating comprehensive and meaningful interpretable structures that might benefit the healthcare industry. We also draw attention to some drawbacks and the need for better technique development and provide new perspectives about this exciting new development in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.