In this paper, an alternative design is proposed based on a family of three-legged manipulators. Such manipulators have two actuators (one vertical and one horizontal) in each leg, unlike the standard UP̅S Stewart platform, which has one actuator in each leg. The arrangement of the two actuators is such a way that, to have vertical motion of the shake table only the Vertical Motion Actuators (VMA) are actuated and for longitudinal or lateral motion, the Horizontal Motion Actuators (HMA) alone are moved. Due to its inherent features such as simplified kinematics, control and distributed loading, a study is carried out to determine the performance of such three-legged manipulators as a shake table. Sinusoidal motion and white noise motions are given to the actuators and shown that the VMA forces have linear relationship with the platform forces. The translational stiffness and the torsional stiffness are studied separately for the manipulators. In the dynamic analysis, it is highlighted that the gravity load of the legs is borne by the Vertical actuators, irrespective of the motion being spatial or planar. Hence, this topology provides scope for lighter electromechanical actuation. The performance analysis of the 3 legged configuration is accomplished using simulation results, in comparison to a 7-UP̅S configuration of shake table. A prototype of the shake table is fabricated and tested with earthquake data of El Centro.
<span>Conventional planar manipulators have all their links in a single plane. Increasing payload at the end-effecter/mobile platform can induce high stress in the links due to cantilever nature of links. Thus it limits the total vertical load that can be applied on the mobile platform. In contrast to the links in conventional planar parallel mechanisms, non-planar links are proposed in this paper, i.e., links are made inclined to the horizontal plane and non planar legs are constructed. Although the links are made non-planar, the rotary (or prismatic) joints axes remain perpendicular (or parallel) to the plane of the base platform, which retains the planar motion of the end-effecter. For studying the application of such non planar links in planar manipulators, new models of inertia, stiffness and leg dynamics have to be developed. In this article, these models are developed and with the developed models, the static analysis is done on the planar manipulators with non-planar links and the performance is compared with the corresponding conventional planar manipulators.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.