Powertrain size optimisation based on vehicle class and usage profile is advantageous for reducing emissions. Backwardfacing powertrain models, which incorporate scalable powertrain components, have often been used for this purpose. However, due to their quasi-static nature, backwardfacing models give very limited information about the limits of the system and drivability of the vehicle. This makes it difficult for control system development and implementation in hardware-in-the-loop (HIL) test systems. This paper investigates the viability of using forward-facing models in the context of powertrain component sizing optimisation. The vehicle model used in this investigation features a conventional powertrain with an internal combustion engine, clutch, manual transmission, and final drive. Simulations that were carried out have indicated that there is minimal effect on the optimal cost with regards to variations in the driver model sensitivity. This opens up the possibility of using forwardfacing models for the purpose of powertrain component sizing.
With a myriad of alternative vehicle powertrain architectures emerging in the industry, such as electric vehicles and hybrid electric vehicles, it is beneficial that the most appropriate system is chosen for the desired vehicle class and duty cycle, and to minimize a given cost function. This paper investigates this issue, by proposing a novel framework that evaluates different types of powertrain architectures under a unified modular powertrain structure. This framework provides a systematic and objective approach to comparing different types of powertrain architectures simultaneously, and will highlight the benefits that can be achieved from each architecture, thus making it possible to develop the reasoning for manufacturers to implement such systems, and potentially accelerate customer take-up of alternative powertrain technology. The results from this investigation have indicated that such analysis is indeed possible, by way of identifying the "cross-over point" between powertrain architectures, where one powertrain architecture transitions into a different architecture with increments in the required travel range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.