Extensive calculations based on density functional theory have been carried out to understand the origin of magnetism in undoped ZnO thin films as found in recent experiments. The observed magnetism is confirmed to be due to Zn, instead of O, vacancy. The main source of the magnetic moment, however, arises from the unpaired 2p electrons at O sites surrounding the Zn vacancy with each nearest-neighbor O atom carrying a magnetic moment ranging from 0.490 to 0.740 B. Moreover, the study of vacancy-vacancy interactions indicates that in the ground state, the magnetic moments induced by Zn vacancies prefer to ferromagnetically couple with the antiferromagnetic state lying 44 meV higher in energy. Since this is larger than the thermal energy at room temperature, the ferromagnetic state can be stable against thermal fluctuations. Calculations and discussions are also extended to ZnO nanowires that have larger surface to volume ratio. Here, the Zn vacancies are found to lead to the ferromagnetic state too. The present theoretical study not only demonstrates that ZnO samples can be magnetic even without transition-metal doping but also suggests that introducing Zn vacancy is a natural and an effective way to fabricate magnetic ZnO nanostructures. In addition, vacancy mediated magnetic ZnO nanostructures may have certain advantages over transition-metal doped systems in biomedical applications.
Interest in low-temperature operation of solid oxide fuel cells is growing. Recent advances in perovskite phases have resulted in an efficient H + /O 2- /e - triple-conducting electrode BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ for low-temperature fuel cells. Here, we further develop BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ for electrolyte applications by taking advantage of its high ionic conduction while suppressing its electronic conduction through constructing a BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ -ZnO p-n heterostructure. With this approach, it has been demonstrated that BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ can be applied in a fuel cell with good electrolyte functionality, achieving attractive ionic conductivity and cell performance. Further investigation confirms the hybrid H + /O 2- conducting capability of BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ -ZnO. An energy band alignment mechanism based on a p-n heterojunction is proposed to explain the suppression of electronic conductivity and promotion of ionic conductivity in the heterostructure. Our findings demonstrate that BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ is not only a good electrode but also a highly promising electrolyte. The approach reveals insight for developing advanced low-temperature solid oxide fuel cell electrolytes.
Concentrated potassium acetate as a water-in-salt electrolyte provides a wide potential window from −1.7 to 1.5 V vs Ag/AgCl KCl sat. . It facilitates the reversible operation of KTi 2 (PO 4 ) 3 , an anode of potassium-ion batteries, that otherwise only functions in nonaqueous electrolytes.
Most organic piezochromic materials exhibit red-shifted and quenched emission as pressure increases. However, an abnormal phenomenon of pressure-induced blue-shifted and enhanced emission is observed in a 9-(3-(1,2,2-triphenylvinyl)phenyl)anthracene crystal, which is based on discrete π−π anthracene (AN) dimers stacking with tetraphenylethylene (TPE) as spacer. A blue-shifted emission appears and strengthens when the pressure is more than 1.23 GPa, and it reaches the maximum when the pressure is 4.28 GPa. This phenomenon is ascribed to the cooperative effect between the aggregation-induced emission of TPE units and energy-transfer suppression from TPE to an AN excimer. This work reports a new concept in the piezochromic field and provides a novel strategy to achieve luminescence from a high-lying excited state.
Conventional lithium-ion batteries embrace graphite anodes which operate at potential as low as metallic lithium, subjected to poor rate capability and safety issues. Among possible alternatives, oxides based on titanium redox couple, such as spinel Li 4 Ti 5 O 12 , have received renewed attention. Here we further expand the horizon to include a perovskite structured titanate La 0.5 Li 0.5 TiO 3 into this promising family of anode materials. With average potential of around 1.0 V vs. Li + /Li, this anode exhibits high specific capacity of 225 mA h g −1 and sustains 3000 cycles involving a reversible phase transition. Without decrease the particle size from micro to nano scale, its rate performance has exceeded the nanostructured Li 4 Ti 5 O 12. Further characterizations and calculations reveal that pseudocapacitance dictates the lithium storage process and the favorable ion and electronic transport is responsible for the rate enhancement. Our findings provide fresh impetus to the identification and development of titanium-based anode materials with desired electrochemical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.