Post-translational modification of histones provides an important regulatory platform for many DNA-templated processes such as gene transcription and DNA damage repair. It has become increasingly apparent that the misregulation of histone modification, caused by deregulation of factors that mediate its installation, removal and/or interpretation, actively contributes to the initiation and progression of human cancer. In this review, we summarize recent advances in understanding the interpretation of certain histone methylation by PHD finger-containing proteins and how misreading, miswriting and miserasing histone methylation marks are associated with oncogenesis. This quickly emerging field not only provides a greater mechanistic understanding of human cancers, but also may help direct novel therapeutic interventions in future.
Differentiation mechanisms and inflammatory functions of neutrophils and macrophages are usually studied by genetic and biochemical approaches that require costly breeding and time-consuming purification to obtain phagocytes for functional analysis. Because Hox oncoproteins enforce self-renewal of factor-dependent myeloid progenitors, we queried whether estrogen-regulated Hoxb8 (ER-Hoxb8) could immortalize macrophage or neutrophil progenitors that would execute normal differentiation and normal innate immune function upon ER-Hoxb8 inactivation. Here we describe methods to derive unlimited quantities of mouse macrophages or neutrophils by immortalizing their respective progenitors with ER-Hoxb8 using different cytokines to target expansion of different committed progenitors. ER-Hoxb8 neutrophils and macrophages are functionally superior to those produced by many other ex vivo differentiation models, have strong inflammatory responses and can be derived easily from embryonic day 13 (e13) fetal liver of mice exhibiting embryonic-lethal phenotypes. Using knockout or small interfering RNA (siRNA) technologies, this ER-Hoxb8 phagocyte maturation system represents a rapid analytical tool for studying macrophage and neutrophil biology.
Histone H3 Lys4 methylation (H3K4me) was proposed as a critical component in regulating the gene expression, epigenetic states, and cellular identities1. The biological meaning of H3K4me is interpreted via conserved modules including plant homeodomain (PHD) fingers that recognize varied H3K4me states1,2. The dysregulation of PHD finger has been implicated in a variety of human diseases including cancers and immune or neurological disorders3. Here we report that fusing an H3K4-trimethylation (H3K4me3)-binding PHD finger, such as the C-terminal PHD finger of JARID1A or PHF23 (JARID1APHD3, PHF23PHD), to a common fusion partner nucleoporin-98 (NUP98) as identified in human leukemias4,5, generated potent oncoproteins that arrested hematopoietic differentiation and induced acute myeloid leukemia (AML). In these processes, a PHD finger that specifically recognizes H3K4me3/2 marks was essential for leukemogenesis. Mutations in PHD fingers that abrogated H3K4me3-binding also abolished leukemic transformation. NUP98-PHD fusion prevented the differentiation-associated removal of H3K4me3 at many loci encoding lineage-specific transcription factors (Hox(s), Gata3, Meis1, Eya1, Pbx1), and enforced their active gene transcription. Mechanistically, NUP98-PHD fusions act as ‘chromatin boundary factors’, dominating over polycomb-mediated gene silencing to ‘lock’ developmentally crucial loci into an active chromatin state (H3K4me3 with induced histone acetylation), a state that defined leukemia stem cells. Collectively, our studies represent the first report wherein the deregulation of PHD finger, ‘effector’ of specific histone modification, perturbs the epigenetic dynamics on developmentally critical loci, catastrophizes cellular fate decision-making, and even causes oncogenesis during development.
EZH2 or EZH1 is the catalytic subunit of the polycomb repressive complex 2 that catalyzes methylation of histone H3 lysine 27 (H3K27). The trimethylation of H3K27 (H3K27me3) is a transcriptionally repressive post-translational modification. Overexpression of EZH2 and hypertrimethylation of H3K27 have been implicated in a number of cancers. Several selective inhibitors of EZH2 have been reported recently. Herein we disclose UNC1999, the first orally bioavailable inhibitor that has high in vitro potency for wild-type and mutant EZH2 as well as EZH1, a closely related H3K27 methyltransferase that shares 96% sequence identity with EZH2 in their respective catalytic domains. UNC1999 was highly selective for EZH2 and EZH1 over a broad range of epigenetic and non-epigenetic targets, competitive with the cofactor SAM, and non-competitive with the peptide substrate. This inhibitor potently reduced H3K27me3 levels in cells and selectively killed diffused large B cell lymphoma cell lines harboring the EZH2Y641N mutant. Importantly, UNC1999 was orally bioavailable in mice, making this inhibitor a valuable tool for investigating the role of EZH2 and EZH1 in chronic animal studies. We also designed and synthesized UNC2400, a close analog of UNC1999 with >1,000-fold lower potency than UNC1999 as a negative control for cell-based studies. Finally, we created a biotin-tagged UNC1999 (UNC2399) which enriched EZH2 in pull-down studies, and a UNC1999 – dye conjugate (UNC2239) for co-localization studies with EZH2 in live cells. Taken together, these compounds represent a set of useful tools for the biomedical community to investigate the role of EZH2 and EZH1 in health and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.