Recognition of modified histone species by distinct structural domains within “reader” proteins plays a critical role in the regulation of gene expression. Readers that simultaneously recognize histones with multiple marks allow transduction of complex chromatin modification patterns into specific biological outcomes. Here, we report that chromatin regulator TRIM24 functions as a reader of dual histone marks via tandem Plant Homeodomain (PHD) and Bromodomain (Bromo). The three-dimensional structure of TRIM24 PHD-Bromo revealed a single functional unit for combinatorial recognition of unmodified H3K4 (H3K4me0) and acetylated H3K23 (H3K23ac) within the same histone tail. TRIM24 binds chromatin and estrogen receptor to activate estrogen-dependent genes associated with cellular proliferation and tumor development. Aberrant expression of TRIM24 negatively correlates with survival of breast cancer patients. The PHD-Bromo of TRIM24 provides a structural rationale for chromatin activation via a noncanonical histone signature, establishing a new paradigm by which chromatin readers may influence cancer pathogenesis.
Histone H3 Lys4 methylation (H3K4me) was proposed as a critical component in regulating the gene expression, epigenetic states, and cellular identities1. The biological meaning of H3K4me is interpreted via conserved modules including plant homeodomain (PHD) fingers that recognize varied H3K4me states1,2. The dysregulation of PHD finger has been implicated in a variety of human diseases including cancers and immune or neurological disorders3. Here we report that fusing an H3K4-trimethylation (H3K4me3)-binding PHD finger, such as the C-terminal PHD finger of JARID1A or PHF23 (JARID1APHD3, PHF23PHD), to a common fusion partner nucleoporin-98 (NUP98) as identified in human leukemias4,5, generated potent oncoproteins that arrested hematopoietic differentiation and induced acute myeloid leukemia (AML). In these processes, a PHD finger that specifically recognizes H3K4me3/2 marks was essential for leukemogenesis. Mutations in PHD fingers that abrogated H3K4me3-binding also abolished leukemic transformation. NUP98-PHD fusion prevented the differentiation-associated removal of H3K4me3 at many loci encoding lineage-specific transcription factors (Hox(s), Gata3, Meis1, Eya1, Pbx1), and enforced their active gene transcription. Mechanistically, NUP98-PHD fusions act as ‘chromatin boundary factors’, dominating over polycomb-mediated gene silencing to ‘lock’ developmentally crucial loci into an active chromatin state (H3K4me3 with induced histone acetylation), a state that defined leukemia stem cells. Collectively, our studies represent the first report wherein the deregulation of PHD finger, ‘effector’ of specific histone modification, perturbs the epigenetic dynamics on developmentally critical loci, catastrophizes cellular fate decision-making, and even causes oncogenesis during development.
Specific chromatin marks keep master regulators of differentiation silent, yet poised for activation by extracellular signals. We report that nodal TGF-β signals use the poised histone mark H3K9me3 to trigger differentiation of mammalian embryonic stem cells. Nodal receptors induce the formation of companion Smad4-Smad2/3 and TRIM33-Smad2/3 complexes. TRIM33-Smad2/3 binds the histone marks H3K9me3 and K18ac on the promoters of mesendoderm regulators Gsc and Mixl1. Binding is through the PHD-Bromo cassette of TRIM33. In the crystal structure of this cassette bound to histone H3 peptides, PHD recognizes K9me3 and Bromo an adjacent K18ac. Binding of TRIM33-Smad2/3 to H3K9me3 displaces the chromatin compacting factor HP1γ and makes nodal response elements accessible to Smad4-Smad2/3 for Pol II recruitment. In turn, Smad4 increases K18 acetylation to augment TRIM33-Smad2/3 binding. Thus, nodal cues use the H3K9me3 mark as a platform to switch master regulators of stem cell differentiation from the poised to the active state.
The Polycomb repressive complex 2 (PRC2) mainly mediates transcriptional repression1,2 and plays essential roles in various biological processes including the maintenance of cell identity and proper differentiation. Polycomb-like proteins (PCLs), including PHF1, MTF2 and PHF19, are PRC2 associated factors that form sub-complexes with PRC2 core components3, and have been proposed to modulate PRC2’s enzymatic activity or its recruitment to specific genomic loci4–13. Mammalian PRC2 binding sites are enriched in CG content, which correlate with CpG islands that display a low level of DNA methylation14. However, the mechanism of PRC2 recruitment to CpG islands is not fully understood. In this study, we solved the crystal structures of the N-terminal domains of PHF1 and MTF2 with bound CpG-containing DNAs in the presence of H3K36me3-containing histone peptides. We found that the extended homologous (EH) regions of both proteins fold into a winged-helix structure, which specifically binds to the unmethylated CpG motif but in a manner completely different from the canonical winged-helix motif-DNA recognition. We further showed that the PCL EH domains are required for efficient recruitment of PRC2 to CpG island-containing promoters in mouse embryonic cells. Our research provides the first direct evidence demonstrating that PCLs are critical for PRC2 recruitment to CpG islands, thereby further clarifying their roles in transcriptional regulation in vivo.
This review focuses on a structure-based analysis of histone posttranslational modification (PTM) readout, where the PTMs serve as docking sites for reader modules as part of larger complexes displaying chromatin modifier and remodeling activities, with the capacity to alter chromatin architecture and templated processes. Individual topics addressed include the diversity of reader-binding pocket architectures and common principles underlying readout of methyl-lysine and methyl-arginine marks, their unmodified counterparts, as well as acetyl-lysine and phosphoserine marks. The review also discusses the impact of multivalent readout of combinations of PTMs localized at specific genomic sites by linked binding modules on processes ranging from gene transcription to repair. Additional topics include cross talk between histone PTMs, histone mimics, epigenetic-based diseases, and drug-based therapeutic intervention. The review ends by highlighting new initiatives and advances, as well as future challenges, toward the promise of enhancing our structural and mechanistic understanding of the readout of histone PTMs at the nucleosomal level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.