The conditional branch has long been considered an expensive operation. The relative cost of conditional branches has increased as recently designed machines are now relying on deeper pipelines and higher multiple issue. Reducing the number of conditional branches executed often results in a substantial performance benefit. This paper describes a code-improving transformation to reorder sequences of conditional branches that compare a common variable to constants. The goal is to obtain an ordering where the fewest average number of branches in the sequence will be executed. First, sequences of branches that can be reordered are detected in the control flow. Second, profiling information is collected to predict the probability that each branch will transfer control out of the sequence. Third, the cost of performing each conditional branch is estimated. Fourth, the most beneficial ordering of the branches based on the estimated probability and cost is selected. The most beneficial ordering often includes the insertion of additional conditional branches that did not previously exist in the sequence. Finally, the control flow is restructured to reflect the new ordering. The results of applying the transformation are on average reductions of about 8% fewer instructions executed and 13% branches performed, as well as about a 4% decrease in execution time.
A new generation of mobile applications requires reduced energy consumption without sacrificin execution performance. In this paper, we propose to respond to these conflictin demands with an innovative statically pipelined processor supported by an optimizing compiler. The central idea of the approach is that the control during each cycle for each portion of the processor is explicitly represented in each instruction. Thus the pipelining is in effect statically determined by the compiler. The benefit of this approach include simpler hardware and that it allows the compiler to perform optimizations that are not possible on traditional architectures. The initial results indicate that static pipelining can significantl reduce power consumption without adversely affecting performance.
The conditional branch has long been considered an expensive operation. The relative cost of conditional branches has increased as recently designed machines are now relying on deeper pipelines and higher multiple issue. Reducing the number of conditional branches executed can often result in a substantial performance benefit. This paper describes a code-improving transformation to reorder sequences of conditional branches. First, sequences of branches that can be reordered are detected in the control flow. Second, profiling information is collected to predict the probability that each branch will transfer control out of the sequence. Third, the cost of performing each conditional branch is estimated. Fourth, the most beneficial ordering of the branches based on the estimated probability and cost is selected. The most beneficial ordering often included the insertion of additional conditional branches that did not previously exist in the sequence. Finally, the control flow is restructured to refflect the new ordering. The results of applying the transformation were significant reductions in the dynamic number of instructions and branches, as well as decreases in execution time.
Abstract-A new generation of mobile applications requires reduced energy consumption without sacrificing execution performance. In this paper, we propose to respond to these conflicting demands with an innovative statically pipelined processor supported by an optimizing compiler. The central idea of the approach is that the control during each cycle for each portion of the processor is explicitly represented in each instruction. Thus the pipelining is in effect statically determined by the compiler. The benefits of this approach include simpler hardware and that it allows the compiler to perform optimizations that are not possible on traditional architectures. The initial results indicate that static pipelining can significantly reduce power consumption without adversely affecting performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.