Amyloid aggregation describes the aberrant selfassembly of peptides into ordered fibrils characterized by cross-β spine cores and is associated with many neurodegenerative diseases and Type 2 diabetes. Oligomers, populated during the early stage of aggregation, are found to be more cytotoxic than mature fibrils. Recently, many amyloidogenic peptides have been reported to undergo liquid−liquid phase separation (LLPS)�a biological process important for the compartmentalization of biomolecules in living cells�prior to fibril formation. Understanding the relationship between LLPS and amyloid aggregation, especially the formation of oligomers, is essential for uncovering disease mechanisms and mitigating amyloid toxicity. In this Perspective, available theories and models of amyloid aggregation and LLPS are first briefly reviewed. By drawing analogies to gas, liquid, and solid phases in thermodynamics, a phase diagram of protein monomer, droplet, and fibril states separated by coexistence lines can be inferred. Due to the high free energy barrier of fibrillization kinetically delaying the formation of fibril seeds out of the droplets, a "hidden" monomer-droplet coexistence line extends into the fibril phase. Amyloid aggregation can then be described as the equilibration process from the initial "out-of-equilibrium" state of a homogeneous solution of monomers to the final equilibrium state of stable amyloid fibrils coexisting with monomers and/or droplets via the formation of metastable or stable droplets as the intermediates. The relationship between droplets and oligomers is also discussed. We suggest that the droplet formation of LLPS should be considered in future studies of amyloid aggregation, which may help to better understand the aggregation process and develop therapeutic strategies to mitigate amyloid toxicity.
Rapid and precise serum cytokine quantification provides immense clinical significance in monitoring the immune status of patients in rapidly evolving infectious/inflammatory disorders, examplified by the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. However, real-time information on predictive cytokine biomarkers to guide targetable immune pathways in pathogenic inflammation is critically lacking, because of the insufficient detection range and detection limit in current label-free cytokine immunoassays. In this work, we report a highly sensitive localized surface plasmon resonance imaging (LSPRi) immunoassay for label-free Interleukin 6 (IL-6) detection utilizing rationally designed peptide aptamers as the capture interface. Benefiting from its characteristically smaller dimension and direct functionalization on the sensing surface via Au–S bonding, the peptide-aptamer-based LSPRi immunoassay achieved enhanced label-free serum IL-6 detection with a record-breaking limit of detection down to 4.6 pg/mL, and a wide dynamic range of ∼6 orders of magnitude (values from 4.6 to 1 × 106 pg/mL were observed). The immunoassay was validated in vitro for label-free analysis of SARS-CoV-2 induced inflammation, and further applied in rapid quantification of serum IL-6 profiles in COVID-19 patients. Our peptide aptamer LSPRi immunoassay demonstrates great potency in label-free cytokine detection with unprecedented sensing capability to provide accurate and timely interpretation of the inflammatory status and disease progression, and determination of prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.