Ionospheric scintillation frequently occurs in equatorial, auroral and polar regions, posing a threat to the performance of the global navigation satellite system (GNSS). Thus, the detection of ionospheric scintillation is of great significance in regard to improving GNSS performance, especially when severe ionospheric scintillation occurs. Normal algorithms exhibit insensitivity in strong scintillation detection in that the natural phenomenon of strong scintillation appears only occasionally, and such samples account for a small proportion of the data in datasets relative to those for weak/moderate scintillation events. Aiming at improving the detection accuracy, we proposed a strategy combining an improved eXtreme Gradient Boosting (XGBoost) algorithm by using the synthetic minority, oversampling technique and edited nearest neighbor (SMOTE-ENN) resampling technique for detecting events imbalanced with respect to weak, medium and strong ionospheric scintillation. It outperformed the decision tree and random forest by 12% when using imbalanced training and validation data, for tree depths ranging from 1 to 30. For different degrees of imbalance in the training datasets, the testing accuracy of the improved XGBoost was about 4% to 5% higher than that of the decision tree and random forest. Meanwhile, the testing results for the improved method showed significant increases in evaluation indicators, while the recall value for strong scintillation events was relatively stable, above 90%, and the corresponding F1 scores were over 92%. When testing on datasets with different degrees of imbalance, there was a distinct increase of about 10% to 20% in the recall value and 6% to 11% in the F1 score for strong scintillation events, with the testing accuracy ranging from 90.42% to 96.04%.
The Global Navigation Satellite System (GNSS) becomes vulnerable in a challenging environment, among which spoofing is the most dangerous threat. Meaconing, as the most convenient way to conduct spoofing, is widely studied around the world, and also leads to lots of research into corresponding anti-spoofing techniques. This paper develops a semi-hardware meaconing platform and proposes a novel GPS meaconing spoofing detection method based on Improved Ratio combined with Carrier-to-noise Moving variance (C/N0 – MV). The effectiveness has been validated theoretically and experimentally. The proposed method is proven useful when the meaconing signal has 5 dB power gain over the authentic signal, presenting 98% detection rate whereas the classic Signal quality monitoring (SQM) method with the Ratio metric presents only 30%.
Efficient task scheduling plays a key role in unmanned aerial vehicle (UAV)-empowered edge computing due to the limitation in energy supply and computation resource on the UAV platforms. This problem becomes much more complicated when the processing-dependent tasks that can be described as directed acyclic graphs (DAGs) and each of their components can only be processed on a virtual machine or container that deploys the desired service function (SF). In this paper, we first build an optimization problem that aims to minimize the completion time of all DAG tasks subject to constraints including task dependency, computation resource occupied by the UAVs, etc. To tackle this problem, a genetic algorithm-based joint deployment and scheduling algorithm, named GA-JoDeS, is put forward, since solving the established 0–1 integer programming problem in polynomial time is infeasible. Subtask offloading decision and UAV position are encoded into the chromosome in the GA-JoDeS algorithm, and the fitness value of an individual is decided by the maximum completion time of all DAG tasks. Through selection, crossover, and mutation, the GA-JoDeS algorithm evolves until it determines the individual with the optimal fitness value as the suboptimal solution to the problem. To evaluate the performance of the proposal, a series of simulations is conducted, and three traditional methods are chosen as comparison benchmarks. The results show that the GA-JoDeS algorithm can convergence quickly, and it can effectively reduce the completion time of DAG tasks with different parameter settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.