A visible-light photodetector, based on two-dimensional SnS nanoflakes, exhibits an extremely high responsivity and detectivity with a fast response time.
Two-dimensional layered materials (TDLMs), such as tin sulfide (SnS2), have attracted significant attention due to their vast potential applications in the fields of electronics, optoelectronics, energy conversion, and storage. Tin monosulfide (SnS) is an intrinsic p-type semiconductor in the family of TDLMs. Further explorations of SnS requires the development of efficient synthesis techniques. Here, we report SnS nanosheets grown via a physical vapour deposition (PVD) approach. The morphology was characterized using Raman spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). These SnS nanosheets exhibit a square shape with a smooth surface having an average lateral size of 7 μm and a thickness of 12 nm. No impurities were observed in the SnS nanosheets. Furthermore, photodetectors based on such SnS nanosheets were fabricated. The results show that the as-grown SnS has an excellent photo-response performance for an 850-nm laser with a high responsivity of 1604 AW-1, an external quantum efficiency of 2.34 × 105% and a detectivity of 3.42 × 1011 jones, which are larger than those values reported for previous SnS-based photodetectors. Moreover, the rise and fall times are 7.6 and 29.9 ms, respectively. Our work provides a strategy to obtain high-purity and ultrathin SnS while indicating that SnS has a great potential in applications for near-infrared photodetectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.