With the increase in the amount of data captured during the manufacturing process, monitoring systems are becoming important factors in decision making for management. Current technologies such as Internet of Things (IoT)-based sensors can be considered a solution to provide efficient monitoring of the manufacturing process. In this study, a real-time monitoring system that utilizes IoT-based sensors, big data processing, and a hybrid prediction model is proposed. Firstly, an IoT-based sensor that collects temperature, humidity, accelerometer, and gyroscope data was developed. The characteristics of IoT-generated sensor data from the manufacturing process are: real-time, large amounts, and unstructured type. The proposed big data processing platform utilizes Apache Kafka as a message queue, Apache Storm as a real-time processing engine and MongoDB to store the sensor data from the manufacturing process. Secondly, for the proposed hybrid prediction model, Density-Based Spatial Clustering of Applications with Noise (DBSCAN)-based outlier detection and Random Forest classification were used to remove outlier sensor data and provide fault detection during the manufacturing process, respectively. The proposed model was evaluated and tested at an automotive manufacturing assembly line in Korea. The results showed that IoT-based sensors and the proposed big data processing system are sufficiently efficient to monitor the manufacturing process. Furthermore, the proposed hybrid prediction model has better fault prediction accuracy than other models given the sensor data as input. The proposed system is expected to support management by improving decision-making and will help prevent unexpected losses caused by faults during the manufacturing process.
Current technology provides an efficient way of monitoring the personal health of individuals. Bluetooth Low Energy (BLE)-based sensors can be considered as a solution for monitoring personal vital signs data. In this study, we propose a personalized healthcare monitoring system by utilizing a BLE-based sensor device, real-time data processing, and machine learning-based algorithms to help diabetic patients to better self-manage their chronic condition. BLEs were used to gather users’ vital signs data such as blood pressure, heart rate, weight, and blood glucose (BG) from sensor nodes to smartphones, while real-time data processing was utilized to manage the large amount of continuously generated sensor data. The proposed real-time data processing utilized Apache Kafka as a streaming platform and MongoDB to store the sensor data from the patient. The results show that commercial versions of the BLE-based sensors and the proposed real-time data processing are sufficiently efficient to monitor the vital signs data of diabetic patients. Furthermore, machine learning–based classification methods were tested on a diabetes dataset and showed that a Multilayer Perceptron can provide early prediction of diabetes given the user’s sensor data as input. The results also reveal that Long Short-Term Memory can accurately predict the future BG level based on the current sensor data. In addition, the proposed diabetes classification and BG prediction could be combined with personalized diet and physical activity suggestions in order to improve the health quality of patients and to avoid critical conditions in the future.
As the risk of diseases diabetes and hypertension increases, machine learning algorithms are being utilized to improve early stage diagnosis. This study proposes a Hybrid Prediction Model (HPM), which can provide early prediction of type 2 diabetes (T2D) and hypertension based on input risk-factors from individuals. The proposed HPM consists of Density-based Spatial Clustering of Applications with Noise (DBSCAN)-based outlier detection to remove the outlier data, Synthetic Minority Over-Sampling Technique (SMOTE) to balance the distribution of class, and Random Forest (RF) to classify the diseases. Three benchmark datasets were utilized to predict the risk of diabetes and hypertension at the initial stage. The result showed that by integrating DBSCAN-based outlier detection, SMOTE, and RF, diabetes and hypertension could be successfully predicted. The proposed HPM provided the best performance result as compared to other models for predicting diabetes as well as hypertension. Furthermore, our study has demonstrated that the proposed HPM can be applied in real cases in the IoT-based Health-care Monitoring System, so that the input risk-factors from end-user android application can be stored and analyzed in a secure remote server. The prediction result from the proposed HPM can be accessed by users through an Android application; thus, it is expected to provide an effective way to find the risk of diabetes and hypertension at the initial stage.
Early diseases prediction plays an important role for improving healthcare quality and can help individuals avoid dangerous health situations before it is too late. This paper proposes a disease prediction model (DPM) to provide an early prediction for type 2 diabetes and hypertension based on individual's risk factors data. The proposed DPM consists of isolation forest (iForest) based outlier detection method to remove outlier data, synthetic minority oversampling technique tomek link (SMOTETomek) to balance data distribution, and ensemble approach to predict the diseases. Four datasets were utilized to build the model and extract the most significant risks factors. The results showed that the proposed DPM achieved highest accuracy when compared to other models and previous studies. We also developed a mobile application to provide the practical application of the proposed DPM. The developed mobile application gathers risk factor data and send it to a remote server, so that an individual's current condition can be diagnosed with the proposed DPM. The prediction result is then sent back to the mobile application; thus, immediate and appropriate action can be taken to reduce and prevent individual's risks once unexpected health situations occur (i.e., type 2 diabetes and/or hypertension) at early stages.INDEX TERMS Diabetes, disease prediction, ensemble learning, hypertension, imbalanced data, outlier data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.