Artificial intelligence can assist providers in a variety of patient care and intelligent health systems. Artificial intelligence techniques ranging from machine learning to deep learning are prevalent in healthcare for disease diagnosis, drug discovery, and patient risk identification. Numerous medical data sources are required to perfectly diagnose diseases using artificial intelligence techniques, such as ultrasound, magnetic resonance imaging, mammography, genomics, computed tomography scan, etc. Furthermore, artificial intelligence primarily enhanced the infirmary experience and sped up preparing patients to continue their rehabilitation at home. This article covers the comprehensive survey based on artificial intelligence techniques to diagnose numerous diseases such as Alzheimer, cancer, diabetes, chronic heart disease, tuberculosis, stroke and cerebrovascular, hypertension, skin, and liver disease. We conducted an extensive survey including the used medical imaging dataset and their feature extraction and classification process for predictions. Preferred reporting items for systematic reviews and Meta-Analysis guidelines are used to select the articles published up to October 2020 on the Web of Science, Scopus, Google Scholar, PubMed, Excerpta Medical Database, and Psychology Information for early prediction of distinct kinds of diseases using artificial intelligence-based techniques. Based on the study of different articles on disease diagnosis, the results are also compared using various quality parameters such as prediction rate, accuracy, sensitivity, specificity, the area under curve precision, recall, and F1-score.
Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.
Globally, cervical cancer remains as the foremost prevailing cancer in females. Hence, it is necessary to distinguish the importance of risk factors of cervical cancer to classify potential patients. The present work proposes a cervical cancer prediction model (CCPM) that offers early prediction of cervical cancer using risk factors as inputs. The CCPM first removes outliers by using outlier detection methods such as density-based spatial clustering of applications with noise (DBSCAN) and isolation forest (iForest) and by increasing the number of cases in the dataset in a balanced way, for example, through synthetic minority over-sampling technique (SMOTE) and SMOTE with Tomek link (SMOTETomek). Finally, it employs random forest (RF) as a classifier. Thus, CCPM lies on four scenarios: (1) DBSCAN + SMOTETomek + RF, (2) DBSCAN + SMOTE+ RF, (3) iForest + SMOTETomek + RF, and (4) iForest + SMOTE + RF. A dataset of 858 potential patients was used to validate the performance of the proposed method. We found that combinations of iForest with SMOTE and iForest with SMOTETomek provided better performances than those of DBSCAN with SMOTE and DBSCAN with SMOTETomek. We also observed that RF performed the best among several popular machine learning classifiers. Furthermore, the proposed CCPM showed better accuracy than previously proposed methods for forecasting cervical cancer. In addition, a mobile application that can collect cervical cancer risk factors data and provides results from CCPM is developed for instant and proper action at the initial stage of cervical cancer.
Current technology provides an efficient way of monitoring the personal health of individuals. Bluetooth Low Energy (BLE)-based sensors can be considered as a solution for monitoring personal vital signs data. In this study, we propose a personalized healthcare monitoring system by utilizing a BLE-based sensor device, real-time data processing, and machine learning-based algorithms to help diabetic patients to better self-manage their chronic condition. BLEs were used to gather users’ vital signs data such as blood pressure, heart rate, weight, and blood glucose (BG) from sensor nodes to smartphones, while real-time data processing was utilized to manage the large amount of continuously generated sensor data. The proposed real-time data processing utilized Apache Kafka as a streaming platform and MongoDB to store the sensor data from the patient. The results show that commercial versions of the BLE-based sensors and the proposed real-time data processing are sufficiently efficient to monitor the vital signs data of diabetic patients. Furthermore, machine learning–based classification methods were tested on a diabetes dataset and showed that a Multilayer Perceptron can provide early prediction of diabetes given the user’s sensor data as input. The results also reveal that Long Short-Term Memory can accurately predict the future BG level based on the current sensor data. In addition, the proposed diabetes classification and BG prediction could be combined with personalized diet and physical activity suggestions in order to improve the health quality of patients and to avoid critical conditions in the future.
In the modern era, deep learning techniques have emerged as powerful tools in image recognition. Convolutional Neural Networks, one of the deep learning tools, have attained an impressive outcome in this area. Applications such as identifying objects, faces, bones, handwritten digits, and traffic signs signify the importance of Convolutional Neural Networks in the real world. The effectiveness of Convolutional Neural Networks in image recognition motivates the researchers to extend its applications in the field of agriculture for recognition of plant species, yield management, weed detection, soil, and water management, fruit counting, diseases, and pest detection, evaluating the nutrient status of plants, and much more. The availability of voluminous research works in applying deep learning models in agriculture leads to difficulty in selecting a suitable model according to the type of dataset and experimental environment. In this manuscript, the authors present a survey of the existing literature in applying deep Convolutional Neural Networks to predict plant diseases from leaf images. This manuscript presents an exemplary comparison of the pre-processing techniques, Convolutional Neural Network models, frameworks, and optimization techniques applied to detect and classify plant diseases using leaf images as a data set. This manuscript also presents a survey of the datasets and performance metrics used to evaluate the efficacy of models. The manuscript highlights the advantages and disadvantages of different techniques and models proposed in the existing literature. This survey will ease the task of researchers working in the field of applying deep learning techniques for the identification and classification of plant leaf diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.