Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.
Lymph node metastasis in breast cancer may be accurately predicted using a DenseNet-169 model. However, the current system for identifying metastases in a lymph node is manual and tedious. A pathologist well-versed with the process of detection and characterization of lymph nodes goes through hours investigating histological slides. Furthermore, because of the massive size of most whole-slide images (WSI), it is wise to divide a slide into batches of small image patches and apply methods independently on each patch. The present work introduces a novel method for the automated diagnosis and detection of metastases from whole slide images using the Fast AI framework and the 1-cycle policy. Additionally, it compares this new approach to previous methods. The proposed model has surpassed other state-of-art methods with more than 97.4% accuracy. In addition, a mobile application is developed for prompt and quick response. It collects user information and models to diagnose metastases present in the early stages of cancer. These results indicate that the suggested model may assist general practitioners in accurately analyzing breast cancer situations, hence preventing future complications and mortality. With digital image processing, histopathologic interpretation and diagnostic accuracy have improved considerably.
Agriculture is the primary source of economic development in India. The fertility of soil, weather conditions, and crop economic values make farmers select appropriate crops for every season. To meet the increasing population requirements, agricultural industries look for improved means of food production. Researchers are in search of new technologies that would reduce investment and significantly improve the yields. Precision is a new technology that helps in improving farming techniques. Pest and weed detection and plant leaf disease detection are the noteworthy applications of precision agriculture. The main aim of this paper is to identify the diseased and healthy leaves of distinct plants by extracting features from input images using CNN algorithm. These features extracted help in identifying the most relevant class for images from the datasets. The authors have observed that the proposed system consumes an average time of 3.8 seconds for identifying the image class with more than 94.5% accuracy.
The adequate aging hypothesis seeks to help people live longer, healthy lives. Diabetic patients who stay remotely need an infrastructure to monitor them continuously and provide timely treatment. Ambient assisted living (AAL) encourages the establishment of solutions that may help optimize older people’s assistive environment while also reducing their impairments. The blood glucose levels of diabetic patients are continuously monitored by gold oxide sensors placed over the human body. The signals associated with the glucose levels in the human body are plotted over a spectrogram image using the short-time Fourier transform, which is further classified using the deep learning model based on finetuned AlexNet, which has employed random oversampling and batch normalization for better precision in the results. The model classifies the spectrogram images as low and high glucose levels and normal glucose levels. Thereby alarming the caretakers for effective treatment of the individuals. Body area networks (BANs) gather information from biosensors and send it to a domain controller to assist caretakers and physicians in recommending the physical exercises for their clients. Evaluation criteria such as sensitivity and specificity, precision, and Mathew’s correlation coefficient are used to assess the effectiveness of the proposed model in this current diabetes study. The cross-validation of the model at multiple folds is being evaluated to analyze the performance. It is evident from the obtained results that the proposed model has exhibited an acceptable performance in precisely sensing the individuals with abnormal glucose levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.