Trypanosoma cruzi infection induces an intense inflammatory response in diverse host tissues. The immune response and the microvascular abnormalities associated with infection are crucial aspects in the generation of heart damage in Chagas disease. Upon parasite uptake, macrophages, which are involved in the clearance of infection, increase inflammatory mediators, leading to parasite killing. The exacerbation of the inflammatory response may lead to tissue damage. Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-dependent nuclear transcription factor that exerts important anti-inflammatory effects and is involved in improving endothelial functions and proangiogenic capacities. In this study, we evaluated the intermolecular interaction between PPARγ and a new synthetic PPARγ ligand, HP24, using virtual docking. Also, we showed that early treatment with HP24, decreases the expression of NOS2, a pro-inflammatory mediator, and stimulates proangiogenic mediators (vascular endothelial growth factor A, CD31, and Arginase I) both in macrophages and in the heart of T. cruzi-infected mice. Moreover, HP24 reduces the inflammatory response, cardiac fibrosis and the levels of inflammatory cytokines (TNF-α, interleukin 6) released by macrophages of T. cruzi-infected mice. We consider that PPARγ agonists might be useful as coadjuvants of the antiparasitic treatment of Chagas disease, to delay, reverse, or preclude the onset of heart damage.
Lysophosphatidic acid (LPA) affects several female reproductive functions through G-protein-coupled receptors. LPA contributes to embryo implantation via the lysophospholipid LPA receptor. In the present study we investigated the participation of endogenous LPA signalling through the LPA receptor in vascularisation and decidualisation, two crucial events at the maternal-fetal interface. Pregnant rats were treated with diacylglycerol pyrophosphate (DGPP), a highly selective antagonist of LPA receptors, on Day 5 of gestation. Pregnant rats received intrauterine (i.u.) injections of single doses of DGPP (0.1mgkg) in a total volume of 2μL in the left horn (treated horn) in the morning of GD5. DGPP treatment produced aberrant embryo spacing and increased embryo resorption. The LPA receptor antagonist decreased the cross-sectional length of the uterine and arcuate arteries and induced histological anomalies in the decidua and placentas. Marked haemorrhagic processes, infiltration of immune cells and tissue disorganisation were observed in decidual and placental tissues from sites of resorption. The mRNA expression of three vascularisation markers, namely interleukin 10 (Il10), vascular endothelial growth factor (Vegfa) and vascular endothelial growth factor receptor 1 (Vegfr1), was reduced at sites of resorption from Day 8. The results show that the disruption of endogenous LPA signalling by blocking the LPA receptor modified the development of uterine vessels with consequences in the formation of the decidua and placenta and in the growth of embryos.
Muscarinic acetylcholine receptors (mAChR) are expressed in cells without nervous origin. mAChR are up-regulated in tumor cells and their stimulation can modulate tumor growth. In this work we investigated the ability of mAChR activation to induce tumor cell death. We studied the action of a combination of low doses of the muscarinic agonist carbachol plus paclitaxel, a chemotherapeutic agent frequently used in breast cancer treatment, in terms of effectiveness. Long term treatment with carbachol exerted anti-proliferative actions on LM2 and LM3 murine mammary adenocarcinoma cells, similarly to paclitaxel. The combination of carbachol with paclitaxel at submaximal concentrations, added during 20 h decreased tumor cell proliferation in a more potent manner than each drug added separately. This effect was reverted by the muscarinic antagonist atropine, and was due to a potentiation of tumor cell apoptosis tested by TUNEL assay. This treatment did not affect the proliferation of the non tumorigenic mammary cell line NMuMG. In conclusion, the combination of a muscarinic agonist plus paclitaxel should be tested as a useful therapeutic tool in breast cancer treatment.
GnRH neuron activity is under the influence of multiple stimuli, including those coming from the endocannabinoid and the immune systems. Since it has been previously suggested that some of the main elements controlling the GnRH pulse generator possess the TRPV1 receptor, the aim of the present study was to evaluate the participation of the hypothalamic TRPV1, through its pharmacological blockade, in the activity of the hypothalamic‐pituitary‐testicular axis in male rats under basal or acute inflammatory conditions. Our hypothesis was based on the idea that the hypothalamic TRPV1 participates in the synthesis of the main neuromodulatory signals controlling GnRH, and therefore the reproductive axis. Our results showed that the hypothalamic TRPV1 blockade induced pro‐inflammatory effects by increasing Tnfα and Il‐1β mRNA hypothalamic levels and inhibited the reproductive axis by affecting Gnrh, Kiss1 and Rfrp3 mRNA levels and decreasing plasma levels of luteinizing hormone and testosterone under basal conditions, without significant additive effects in rats exposed to systemic LPS. Altogether, these results suggest that the hypothalamic TRPV1 receptor participates in the regulation of the GnRH system, probably by modulating immune‐dependent mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.