Aim: The goal of this study was to determine whether polymorphisms in the vitamin D receptor (VDR) and estrogen receptor alpha (ESR1) genes are associated with variations of peak bone mineral density (BMD) and obesity phenotypes in young Chinese men. Methods: A total of 1215 subjects from 400 Chinese nuclear families were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and allele-specific multiple PCR (ASM-PCR) analysis at the ApaI, FokI, and CDX2 sites in the VDR gene and the PvuII and XbaI sites in the ESR1 gene. BMD at the lumbar spine and hip, total fat mass, and total lean mass were measured using dual energy X-ray absorptiometry. The associations between VDR and ESR1 gene polymorphisms with peak BMD, body mass index (BMI), total fat mass, total lean mass, and percentage fat mass (PFM) were determined using quantitative transmission disequilibrium tests (QTDTs). Results: Using QTDTs, no significant within-family associations were obtained between genotypes or haplotypes of the VDR and ESR1 genes and peak BMD. For the obesity phenotypes, the within-family associations were significant between CDX2 genotypes and BMI (P=0.046), fat mass (P=0.004), and PFM (P=0.020). Further, PvuII was significantly associated with the variation of fat mass and PFM (P=0.002 and P=0.039, respectively). A subsequent 1000 permutations were in agreement with these within-family association results. Conclusion: Our findings showed that VDR and ESR1 polymorphisms were associated with total fat mass in young Chinese men, but we failed to find a significant association between VDR and ESR1 genotypes and peak BMD. These findings suggested that the VDR and ESR1 genes are quantitative trait loci (QTL) underlying fat mass variation in young Chinese men.
BackgroundThe Wnt/beta-catenin signaling pathway plays an important role in skeletal development. Polymorphisms of frizzled-related protein (FRZB), an antagonist of this pathway, may generate variations in bone mineral density (BMD). In this study, we analyzed the association between FRZB genotypes and peak BMD variation in the spines and hips of two relatively large samples of Chinese female-offspring and male-offspring nuclear families.MethodsWe recruited 1,260 subjects from 401 female-offspring nuclear families and 1,296 subjects from 427 male-offspring nuclear families and genotyped four tagging single nucleotide polymorphisms (tagSNPs) (rs6433993, rs409238, rs288324, and rs4666865) spanning the entire FRZB gene. The SNPs rs288326 and rs7775, which are associated with hip osteoarthritis, were not selected in this study because of their low minor allele frequencies (MAFs) in Chinese people. The quantitative transmission disequilibrium test (QTDT) was used to analyze the association between each SNP and haplotype with peak BMD in female- and male-offspring nuclear families.ResultsIn the female-offspring nuclear families, we found no evidence of an association between either single SNPs or haplotypes and peak BMD in the spine or hip. In the male-offspring nuclear families, no within-family association was observed for either SNPs or haplotypes, although a significant total association was found between rs4666865 and spine BMD (P = 0.0299).ConclusionOur results suggest that natural variation in FRZB is not a major contributor to the observed variability in peak BMD in either Chinese females or males. Because ethnic differences in the FRZB genotypes may exist, other studies in different population are required to confirm such results.
Here we report the identification of two different mutations in chloride channel 7 gene in two unrelated patients with autosomal dominant osteopetrosis type II. We determined that one patient (a 32-year-old woman) carried a heterozygous gene for a R767W mutation in exon 24, and another patient (a 17-year-old boy) carried a heterozygous gene for a novel frameshift mutation (Glu798FS) in exon 25. Recent studies have reported loss-of-function mutations in the chloride channel 7 (CLCN7) gene as a cause of autosomal dominant osteopetrosis type II (ADO-II). The identification of gene mutations in Chinese with ADO has not been reported previously. In this study, we identified mutations of the CLCN7 gene in two unrelated Chinese families with ADO-II. Two probands with ADO-II were diagnosed based on their bone characteristics on X-rays and their laboratory results. All 25 exons of the CLCN7 gene, including the exon-intron boundaries, were sequenced. We found in family 1 that the proband (a 32-year-old woman) was heterozygous for a CLCN7 mutation. The nonsynonymous mutation consisted of a heterozygous C/T transition at codon 2327 in exon 24, which resulted in an arginine (CGG)-to tryptophan (TGG) substitution at position 767 (R767W). The same heterozygous mutation (C/T) was determined in her father and son, who were asymptomatic with normal skeleton radiography. In family 2, we found that the proband (a 17-year-old boy) carried a novel frameshift mutation (Glu798FS) resulting from a G insertion between codon 60 and codon 61 in exon 25. The heterozygous -/G insertion is predicted to elongate the peptide of CLCN7 by 120 amino acids after position 797 amino acids. Similarly, some individuals of this family carried the same heterozygous mutation, but they are all asymptomatic. Furthermore, the R767W and Glu798FS mutations were not found in 100 unrelated controls. Our present findings suggest that the novel Glu798FS mutation in exon 25 and R767W in exon 24 in the CLCN7 gene were responsible for ADO-II in these Chinese patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.