Massive growth of the microfluidics field has triggered numerous advances in focusing, separating, ordering, concentrating, and mixing of microparticles. Microfluidic systems capable of performing these functions are rapidly finding applications in industrial, environmental, and biomedical fields. Passive and label-free methods are one of the major categories of such systems that have received enormous attention owing to device operational simplicity and low costs. With new platforms continuously being proposed, our aim here is to provide an updated overview of the state of the art for passive label-free microparticle separation, with emphasis on performance and operational conditions. In addition to the now common separation approaches using Newtonian flows, such as deterministic lateral displacement, pinched flow fractionation, cross-flow filtration, hydrodynamic filtration, and inertial microfluidics, we also discuss separation approaches using non-Newtonian, viscoelastic flow. We then highlight the newly emerging approach based on shear-induced diffusion, which enables direct processing of complex samples such as untreated whole blood. Finally, we hope that an improved understanding of label-free passive sorting approaches can lead to sophisticated and useful platforms toward automation in industrial, environmental, and biomedical fields.
Fabrication of microfluidic devices by soft lithography is by far the most popular approach due to simplicity and low cost. In this approach PDMS (polydimethylsiloxane) is cast on a photoresist master to generate replicas that are then sealed against glass slides using oxygen plasma. In this work, we demonstrated fabrication of soft photolithography masters using lamination of ADEX dry film as an alternative to the now classic SU-8 resist masters formed by spin coating. Advantages of using ADEX dry film include the easily-achievable uniform thickness without edge bead; simplicity of the process with significant time savings due to non-sticky nature of the film; and fewer health concerns due to less toxic developing solution and antimony-free composition. As we demonstrate, the process can be performed in a low-cost improvised fabrication room in ambient light, in place of a conventional yellow-light cleanroom environment. We believe this approach holds the promise of delivering state-of-the-art microfluidic techniques to the broad field of biomedical and pharmaceutical research.
Glass capillary tubes have been widely used in microfluidics for generating microdroplets and microfibers. Here, we report on the application of glass capillary to inertial focusing of microparticles and cells for high-throughput flow cytometry. Our device uses a commercially available capillary tube with a square crosssection. Wrapping the tube into a helical shape induces the Dean vortices that aid focusing of cells or microbeads into a single position. We investigated the inertial focusing of microbeads in the device at various Re and concentrations and demonstrated 3D focusing with $100% efficiency for a wide range of microparticle diameters. We integrated the device with a laser counting system and demonstrated continuous counting of 10 lm microbeads with a high throughput of 13 000 beads/s as well as counting of fluorescently labeled white blood cells in the diluted whole blood. The helical capillary device offers a number of key advantages, including rapid and ultra-low-cost plug-and-play fabrication, optical transparency, and full compatibility with bright field or fluorescent imaging, easy re-configurability of the device radius for tuning focusing behavior, and ability to rotate for easy side-wall observation. With precise and consistent 3D focusing of microbeads and cells with a wide range of sizes at high throughput and without the use of sheath flows, we envision that this simple capillary-based inertial microfluidic device will create new opportunities for this technique to be widely adopted in the laboratory research. Published by AIP Publishing. [http://dx
Articles you may be interested inEffect of wafer bow on electrostatic chucking and back side gas cooling High-temperature electrostatic chuck for nonvolatile materials dry etch Etch rate and uniformity are two basic indicators of how rf power is coupled into the wafer. In reactive ion etch of dielectric layers, wafer temperature also appears as a key parameter, due to the innate deposition. When electrostatic chuck is introduced, we have to study and control both rf coupling and wafer temperature to maximize etch rate and minimize nonuniformity. We first review the basics of the electrostatic chuck ͑e-chuck͒ design and operation, and check them against Applied Materials' polyimide monopolar e-chuck. Then a simple circuit model is developed and fitted to the experimental results. The model says to have higher etch rate, one needs to couple more energy through the wafer center. This is achieved by using a thicker insulating process kit with low dielectric constant. The uniformity study shows for a given wafer, its etch rate variation across the wafer can be divided into three sections-center, B-field corner, and very edge of the wafer, and each section is controlled by a key parameter. By optimizing these parameters, we are able to increase the etch rate and decrease its nonuniformity to 1.5% ͑1, 3 mm edge exclusion͒. Finally, wafer temperatures of both center and edge are studied and the delta between center and edge is reduced to ϳ6°C, and spin-on-glass etch rate nonuniformity is reduced to 1 of 1.88%.
In this paper, a quantitative index system for the coordinated promotion of ecological protection and high-quality development in the Yellow River Basin is constructed, and the method of "single index quantification multi index synthesis multi criteria integration" is adopted to quantitatively evaluate the coordination degree of ecological protection and high-quality development in the Yellow River Basin. Using the data of the Yellow River Basin from 2009 to 2018 for example, the results show that the coordination degree of the Yellow River Basin shows an upward trend from "close coordination" to "relatively collaborative" from 2009 to 2018.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.