This work is mainly focused on the investigation of the influence of the amount of a few CeO2 on the physicochemical and catalytic properties of CeO2-doped TiO2 catalysts for NO reduction by a CO model reaction. The obtained samples were characterized by means of XRD, N2-physisorption (BET), LRS, UV-vis DRS, XPS, (O2, CO, and NO)-TPD, H2-TPR, in situ FT-IR, and a NO + CO model reaction. These results indicate that a small quantity of CeO2 doping into the TiO2 support will cause an obvious change in the properties of the catalyst and the TC-60 : 1 (the TiO2/CeO2 molar ratio is 60 : 1) support exhibits the most extent of lattice expansion, which indicates that the band lengths of Ce-O-Ti are longer than other TC (the solid solution of TiO2 and CeO2) samples, probably contributing to larger structural distortion and disorder, more defects and oxygen vacancies. Copper oxide species supported on TC supports are much easier to be reduced than those supported on the pure TiO2 and CeO2 surface-modified TiO2 supports. Furthermore, the Cu/TC-60 : 1 catalyst shows the highest activity and selectivity due to more oxygen vacancies, higher mobility of surface and lattice oxygen at lower temperature (which contributes to the regeneration of oxygen vacancies, and the best reducing ability), the most content of Cu(+), and the strongest synergistic effect between Ti(3+), Ce(3+) and Cu(+). On the other hand, the CeO2 doping into TiO2 promotes the formation of a Cu(+)/Cu(0) redox cycle at high temperatures, which has a crucial effect on N2O reduction. Finally, in order to further understand the nature of the catalytic performances of these samples, taking the Cu/TC-60 : 1 catalyst as an example, a possible reaction mechanism is tentatively proposed.
Enzyme-mediated injectable hydrogels based on a poly(l-glutamic acid) graft copolymer with tunable physicochemical properties, biodegradability and good biocompatibility were developed.
The confined crystallization behavior, melting behavior, and nonisothermal crystallization kinetics of the poly(ethylene glycol) block (PEG) in poly(L-lactide)poly(ethylene glycol) (PLLA-PEG) diblock copolymers were investigated with wideangle X-ray diffraction and differential scanning calorimetry. The analysis showed that the nonisothermal crystallization behavior changed from fitting the Ozawa equation and the Avrami equation modified by Jeziorny to deviating from them with the molecular weight of the poly(L-lactide) (PLLA) block increasing. This resulted from the gradual strengthening of the confined effect, which was imposed by the crystallization of the PLLA block. The nucleation mechanism of the PEG block of PLLA15000-PEG5000 at a larger degree of supercooling was different from that of PLLA2500-PEG5000, PLLA5000-PEG5000, and PEG5000 (the numbers after PEG and PLLA denote the molecular weights of the PEG and PLLA blocks, respectively). They were homogeneous nucleation and heterogeneous nucleation, respectively. The PLLA block bonded chemically with the PEG block and increased the crystallization activation energy, but it provided nucleating sites for the crystallization of the PEG block, and the crystallization rate rose when it was heterogeneous nucleation. The number of melting peaks was three and one for the PEG homopolymer and the PEG block of the diblock copolymers, respectively. V V C 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: [3215][3216][3217][3218][3219][3220][3221][3222][3223][3224][3225][3226] 2006
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.