The energy-conversion stability of hydropower is critical to satisfy the growing demand for electricity. In low-head hydropower plants, a gravitational surface vortex is easily generated, which causes irregular shock vibrations that damage turbine performance and input-flow stability. The gravitational surface vortex is a complex fluid dynamic problem with high nonlinear features. Here, we thoroughly investigate its essential hydrodynamic properties, such as Ekman layer transport, heat/mass transfer, pressure pulsation, and vortex-induced vibration, and we note some significant scientific issues as well as future research directions and opportunities. Our findings show that the turbulent Ekman layer analytical solution and vortex multi-scale modeling technology, the working condition of the vortex across the scale heat/mass transfer mechanism, the high-precision measurement technology for high-speed turbulent vortexes, and the gas–liquid–solid three-phase vortex dynamics model are the main research directions. The vortex-induced vibration transition mechanism of particle flow in complex restricted pipelines, as well as the improvement of signal processing algorithms and a better design of anti-spin/vortex elimination devices, continue to draw attention. The relevant result can offer a helpful reference for fluid-induced vibration detection and provide a technical solution for hydropower energy conversion.
Multiphase vortices are widely present in the metallurgical pouring processes, chemical material extraction, hydroelectric power plant energy conversion, and other engineering fields. Its critical state detection is of great significance in improving product yield and resource utilization. However, the multiphase vortex is a complex dynamics problem with highly nonlinear features, and its fluid-induced vibration-generation mechanism faces significant challenges. A fluid-solid coupling-based modeling method is proposed to explore mass transfer process with the vorticity distribution and vibration-generation mechanism. A vibration-processing method is utilized to discuss the four flow-state transition features. A fluid-induced vibration experiment platform is established to verify the numerical results. It is found that the proposed modeling method can better reveal the vibration-evolution regularities of the fluid-solid coupling process. The flow field has a maximum value in the complex water–oil–gas coupled flow process, and induces a pressure pulsation phenomenon, and its frequency amplitude is much larger than that of the water phase and water–oil two-phase flow states. In the critical generation state, the increasing amplitude and nonlinear step structure of high-frequency bands (45 Hz~50 Hz) and random pulse components can be used for the online detection of multiphase-coupling states.
Flow pattern monitoring of gas–liquid–solid mixed flow has great significance to enhance the quality and efficiency of material mixing, and the material transport mechanism and dynamic control strategy are faced with significant challenges. To solve these problems, a computational fluid mechanics and discrete element method (CFD-DEM) coupling modeling and solving approach based on soft sphere and porous models is presented to explore material transport mechanisms. The user-defined function (UDF) is adopted to perform data communication, and the porosity of the porous model is calculated to achieve the bidirectional calculation of Eulerian fluid and Lagrange particle phases. Material transport processes of gas–liquid–solid mixed flows are discussed to explore material transport mechanisms of particle flow and the flow pattern evolution laws under the inflation control are obtained. The results show that the particles are not evenly distributed under the synergistic action of impeller rotation and inflation. The particles in the upper and lower impeller have similar characteristics along the radial direction, and there is an aggregation phenomenon in the impeller center. A certain degree of inflation enhances the macroscopic mixing process of turbulent vortices, promotes the particle suspension effect inside the container, and improves the material transport efficiency inside the mixing space. Relevant research results can provide theoretical references for the material transport mechanism, flow pattern tracking models, and energy transfer and can also provide technical support for chemical process separation, food processing, battery homogenate mixing, and other production processes.
The transmission in automobiles is the core component to ensure operational stability. Heat accumulation in the meshing process will reduce the transmission efficiency and affect the service life. Here, the essential physical process to improve transmission heat dissipation is the dynamic evolution process and the thermal transfer characteristics of lubricating oil fields during gear meshing. This paper presents a modeling and solving method for gear meshing lubrication and thermal transfer features based on the volume of the fluid model and piecewise linear interface construction (VOF-PLIC). The dynamic mesh technique combines spring smoothing and reconstruction to optimize the numerical solution process. The dynamic evolution law of gear meshing lubrication and thermal transfer is obtained by analyzing the lubrication evolution process under different speed/steering conditions. The results show that the proposed modeling and solving method could well reveal the lubrication and thermal transfer laws of the gear meshing. The temperature of the gear meshing regions was higher than that in the other regions, and the lubrication temperature showed an increasing linear trend with the stirring process. As the gear speed increased, the meshing resistance moment increased, the transmission power loss increased, and the lubrication oil temperature was larger than that of the gearbox. The power loss under the clockwise rotation of the driving gear G4 was higher than that under the counterclockwise rotation of the driving gear. The relevant results can provide theoretical references for the dynamic analysis of automotive transmission lubrication and technical support for gear profile design and lubrication optimization.
The mixing transport courses of three-phase particle flows exist in some industrial applications, such as metallurgy material extraction, lithium electric slurry dispersion, and material mixing in the high-end chemical industry. Its mixing transport mechanism is a fluid–structure coupling dynamic issues with intensive shear and nonlinear characteristics, making the real-time prediction of the flow field face challenges. To address the above problem, a bidirectional fluid–structure coupling three-phase particle flow dynamic model is built based on the coupled computational fluid dynamics and discrete element model (CFD-DEM) to explore the mixing transport mechanism. An interphase coupling solution method is utilized to solve the interaction effects of the fluid and particle. Research results illustrate that the proposed method modeling can well reveal the mixing transport mechanism of the three-phase particle flows. Due to the additive effects of stirring speed, stirring blade size, and stirring blade structure, the flow field near the blade has a high-velocity gradient change, while the flow field away from the stirring blade has no significant change. When the particle material settles and accumulates to a certain extent, the particle movement is blocked, and the stirring speed of the particle material near the blade is reduced. The mixing effect of the particle material will be reduced near the wall. It can provide a valuable reference for particle flow transport and pattern identification and support technical support for lithium electric homogenate mixing, chemical extraction, and pharmacy process regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.