Synthetic carbohydrate ligands -also widely known as glycopolymers -are known to undergo numerous recognition events when interacting with their corresponding lectins. Interactions are greatly enhanced due to the multivalent character displayed by the large number of repeating carbohydrate units along the polymers (pendant glycopolymers); therefore, resulting what is called the ''glycocluster effect''. Moreover, the strength and the availability of these multivalent recognitions can be tuned via the architecture of the glycopolymers. Hence, understanding the mechanistic interactions between the types of lectins (plant, animal, toxin and bacteria) with their synthetic ligands is crucial. This review focuses on the synthesis of pendant glycopolymers via various synthetic pathways (free radical polymerization, NMP, RAFT, ATRP, cyanoxyl mediated polymerization, ROP, ROMP and post-polymerization modification) and their interactions with their respectively lectins.
Approaches to thromboresistant materials are discussed including passivation; incorporation and/or release of anticoagulants, antiplatelet agents, thrombolytic agents; and mimicry of the vascular endothelium.
Synthesis of well-defined neoglycopolymer-protein biohybrid materials and a preliminary study focused on their ability of binding mammalian lectins and inducing immunological function is reported. Crucial intermediates for their preparation are well-defined maleimide-terminated neoglycopolymers (Mn ) 8-30 kDa; Mw/Mn ) 1.20-1.28) presenting multiple copies of mannose epitope units, obtained by combination of transition-metal-mediated living radical polymerization (TMM LRP) and Huisgen [2+3] cycloaddition. Bovine serum albumin (BSA) was employed as single thiol-containing model protein, and the resulting bioconjugates were purified following two independent protocols and characterized by circular dichroism (CD) spectroscopy, SDS PAGE, and SEC HPLC. The versatility of the synthetic strategy presented in this work was demonstrated by preparing a small library of conjugating glycopolymers that only differ from each other for their relative epitope density were prepared by coclicking of appropriate mixtures of mannopyranoside and galactopyranoside azides to the same polyalkyne scaffold intermediate. Surface plasmon resonance binding studies carried out using recombinant rat mannose-binding lectin (MBL) showed clear and dose-dependent MBL binding to glycopolymer-conjugated BSA. In addition, enzyme-linked immunosorbent assay (ELISA) revealed that the neoglycopolymer-protein materials described in this work possess significantly enhanced capacity to activate complement via the lectin pathway when compared with native unmodified BSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.